A058398 Partition triangle A008284 read from right to left.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 3, 1, 1, 1, 2, 3, 4, 3, 1, 1, 1, 2, 3, 5, 5, 4, 1, 1, 1, 2, 3, 5, 6, 7, 4, 1, 1, 1, 2, 3, 5, 7, 9, 8, 5, 1, 1, 1, 2, 3, 5, 7, 10, 11, 10, 5, 1, 1, 1, 2, 3, 5, 7, 11, 13, 15, 12, 6, 1, 1, 1, 2, 3, 5, 7, 11, 14, 18, 18, 14, 6, 1, 1, 1, 2, 3, 5, 7, 11
Offset: 1
Examples
Lower triangular matrix: 1; 1,1; 1,1,1; 1,1,2,1; 1,1,2,2,1; 1,1,2,3,3,1; 1,1,2,3,4,3,1; 1,1,2,3,5,5,4,1; ...
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 94, 96 and 307.
- M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 27.
Links
- Seiichi Manyama, Rows n = 1..140, flattened
- Henry Bottomley, Illustration of initial terms
- Roser Homs and Anna-Lena Winz, Deformations of local Artin rings via Hilbert-Burch matrices, arXiv:2309.06871 [math.AC], 2023. See p. 16.
Programs
-
Mathematica
row[n_] := Table[ IntegerPartitions[n, k] // Length, {k, 0, n}] // Differences // Reverse; Table[row[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Feb 28 2013 *)
Formula
a(n, m)= A008284(n, n-(m-1)).
a(n, m)= p(m-1, n-m+1), n >= m >= 1 with the p(n, m) array defined in the comment.
a(n, m)=0 if n
Viewed as a square array by antidiagonals, T(n,k) = 0 if n<0; T(n,1) = 1; otherwise T(n,k) = T(n,k-1) + T(n-k,k). - Franklin T. Adams-Watters, Jul 25 2006
Let x be a triangular number C(n,2), where n is the integer being partitioned. Then a(x) = a(x+1) = a(x+2) = 1. Also, a(x+3) = 2 for x>3 and a(x-1) = floor(n/2). - Allan Bickle, Apr 18 2024
Comments