cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058399 Triangle of partial row sums of partition triangle A008284.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 5, 4, 2, 1, 7, 6, 4, 2, 1, 11, 10, 7, 4, 2, 1, 15, 14, 11, 7, 4, 2, 1, 22, 21, 17, 12, 7, 4, 2, 1, 30, 29, 25, 18, 12, 7, 4, 2, 1, 42, 41, 36, 28, 19, 12, 7, 4, 2, 1, 56, 55, 50, 40, 29, 19, 12, 7, 4, 2, 1, 77, 76, 70, 58, 43, 30, 19, 12, 7, 4, 2, 1, 101, 100, 94, 80, 62
Offset: 1

Views

Author

Wolfdieter Lang, Dec 11 2000

Keywords

Comments

T(n,m) is also the number of m-th largest elements in all partitions of n. - Omar E. Pol, Feb 14 2012
It appears that reversed rows converge to A000070. - Omar E. Pol, Mar 10 2012
The row sums give A006128. - Omar E. Pol, Mar 26 2012
T(n,m) is also the number of regions traversed by the m-th column of the section model of partitions with n sections (Cf. A135010, A206437). - Omar E. Pol, Apr 20 2012

Examples

			From _Omar E. Pol_, Mar 10 2012: (Start)
Triangle begins:
   1;
   2,  1;
   3,  2,  1;
   5,  4,  2,  1;
   7,  6,  4,  2,  1;
  11, 10,  7,  4,  2,  1;
  15, 14, 11,  7,  4,  2,  1;
  22, 21, 17, 12,  7,  4,  2,  1;
  30, 29, 25, 18, 12,  7,  4,  2,  1;
  42, 41, 36, 28, 19, 12,  7,  4,  2,  1;
  56, 55, 50, 40, 29, 19, 12,  7,  4,  2,  1;
  77, 76, 70, 58, 43, 30, 19, 12,  7,  4,  2,  1;
(End)
		

Crossrefs

Columns 1-5: A000041(n), A000065(n+1), A004250(n+2), A035300(n-1), A035301(n-1), n >= 1.
Cf. A008284.

Programs

  • Maple
    b:= proc(n, k) option remember;
          `if`(n=0, 1, `if`(k<1, 0, add(b(n-j*k, k-1), j=0..n/k)))
        end:
    T:= (n, m)-> b(n,n) -b(n,m-1):
    seq (seq (T(n, m), m=1..n), n=1..15);  # Alois P. Heinz, Apr 20 2012
  • Mathematica
    t[n_, m_] := Sum[ IntegerPartitions[n, {k}] // Length, {k, m, n}]; Table[t[n, m], {n, 1, 13}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 21 2013 *)

Formula

T(n, m) = Sum_{k=m..n} A008284(n, k).
G.f. for m-th column: Sum_{n>=1} x^(n)/Product_{k=1..n+m-1} (1 - x^k).
T(n, m) = Sum_{k=1..n} A207379(k, m). - Omar E. Pol, Apr 22 2012