A058399 Triangle of partial row sums of partition triangle A008284.
1, 2, 1, 3, 2, 1, 5, 4, 2, 1, 7, 6, 4, 2, 1, 11, 10, 7, 4, 2, 1, 15, 14, 11, 7, 4, 2, 1, 22, 21, 17, 12, 7, 4, 2, 1, 30, 29, 25, 18, 12, 7, 4, 2, 1, 42, 41, 36, 28, 19, 12, 7, 4, 2, 1, 56, 55, 50, 40, 29, 19, 12, 7, 4, 2, 1, 77, 76, 70, 58, 43, 30, 19, 12, 7, 4, 2, 1, 101, 100, 94, 80, 62
Offset: 1
Examples
From _Omar E. Pol_, Mar 10 2012: (Start) Triangle begins: 1; 2, 1; 3, 2, 1; 5, 4, 2, 1; 7, 6, 4, 2, 1; 11, 10, 7, 4, 2, 1; 15, 14, 11, 7, 4, 2, 1; 22, 21, 17, 12, 7, 4, 2, 1; 30, 29, 25, 18, 12, 7, 4, 2, 1; 42, 41, 36, 28, 19, 12, 7, 4, 2, 1; 56, 55, 50, 40, 29, 19, 12, 7, 4, 2, 1; 77, 76, 70, 58, 43, 30, 19, 12, 7, 4, 2, 1; (End)
Links
- Alois P. Heinz, Rows n = 1..141, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k<1, 0, add(b(n-j*k, k-1), j=0..n/k))) end: T:= (n, m)-> b(n,n) -b(n,m-1): seq (seq (T(n, m), m=1..n), n=1..15); # Alois P. Heinz, Apr 20 2012
-
Mathematica
t[n_, m_] := Sum[ IntegerPartitions[n, {k}] // Length, {k, m, n}]; Table[t[n, m], {n, 1, 13}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 21 2013 *)
Formula
T(n, m) = Sum_{k=m..n} A008284(n, k).
G.f. for m-th column: Sum_{n>=1} x^(n)/Product_{k=1..n+m-1} (1 - x^k).
T(n, m) = Sum_{k=1..n} A207379(k, m). - Omar E. Pol, Apr 22 2012
Comments