A058515 GCD of totients of consecutive integers.
1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 6, 2, 8, 8, 2, 6, 2, 4, 2, 2, 2, 4, 4, 6, 6, 4, 4, 2, 2, 4, 4, 8, 12, 12, 18, 6, 8, 8, 4, 6, 2, 4, 2, 2, 2, 2, 2, 4, 8, 4, 2, 2, 8, 12, 4, 2, 2, 4, 30, 6, 4, 16, 4, 2, 2, 4, 4, 2, 2, 24, 36, 4, 4, 12, 12, 6, 2, 2, 2, 2, 2, 8, 2, 14, 8, 8, 8, 24, 4, 4, 2, 2, 8, 32, 6
Offset: 1
Examples
For n = 61, gcd(phi(62), phi(61)) = gcd(30, 60) = 30, so a(61) = 30.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Map[GCD @@ # &, Partition[EulerPhi@ Range@ 98, 2, 1]] (* Michael De Vlieger, Aug 22 2017 *)
-
PARI
a(n) = gcd(eulerphi(n), eulerphi(n+1)); \\ Michel Marcus, Dec 10 2013
Formula
a(n) = gcd(phi(n+1), phi(n)), where phi = A000010.
Extensions
Offset corrected to 1 by Michel Marcus, Dec 10 2013