A058580 a(n) is the least natural number m such that the fractional part of m*(2^0.5) is less than 2^(-n).
1, 3, 5, 17, 29, 29, 99, 169, 577, 985, 985, 3363, 5741, 19601, 33461, 33461, 114243, 195025, 195025, 1136689, 1136689, 3880899, 6625109, 6625109, 38613965, 38613965, 131836323, 225058681, 225058681, 768398401, 1311738121, 4478554083, 7645370045, 7645370045, 26102926097
Offset: 1
Keywords
Examples
a(7) = 99 because 99*(2^0.5) = 140.00714267... and 0.00714267... < 2^(-7) = 0.0078125 and 99 is the least natural number that satisfies this inequality.
Crossrefs
Cf. A079496.
Programs
-
PARI
o=1:for(n=1,50, for(m=o,10^9,if(frac(sqrt(2)*m)<2^(-n),print1(m","):o=m:break)))
Formula
a(n) = min m such that m*(2^0.5)-floor(m*(2^0.5)) < 2^(-n).
Extensions
More terms from Ralf Stephan, Mar 27 2003
More terms from Sean A. Irvine, Aug 10 2022
Comments