cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058645 a(n) = 2^(n-3)*n^2*(n+3).

Original entry on oeis.org

0, 1, 10, 54, 224, 800, 2592, 7840, 22528, 62208, 166400, 433664, 1105920, 2768896, 6823936, 16588800, 39845888, 94699520, 222953472, 520486912, 1205862400, 2774532096, 6343884800, 14422114304, 32614907904, 73400320000
Offset: 0

Views

Author

Yong Kong (ykong(AT)curagen.com), Dec 26 2000

Keywords

Comments

a(n) is the number of ways to select a subset of {1,2,...n} and then use the subset as an alphabet to form ordered triples.

References

  • A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.

Crossrefs

First differences are in A084903.

Programs

  • Mathematica
    CoefficientList[Series[(x+3x^2+x^3) Exp[x]^2,{x,0,20}],x] * Table[n!,{n,0,20}]
  • PARI
    a(n)=2^(n-3)*n^2*(n+3)

Formula

a(n) = Sum_{k=0..n} k^3 * binomial(n, k): binomial transform of A000578.
G.f.: x*(1+2*x-2*x^2)/(1-2*x)^4. E.g.f.: x*(1+3*x+x^2)*e^(2*x).
A001793(n)*(n+3) = -a(-3-n)*2^(2*n+3) for all n in Z. - Michael Somos, Apr 19 2019