A058673 Number of matroids on n labeled points.
1, 2, 5, 16, 68, 406, 3807, 75164, 10607540
Offset: 0
Examples
The 16 possible sets E such that ({1, 2, 3}, E) is a matroid: {{}} {{}, {1}} {{}, {2}} {{}, {3}} {{}, {1}, {2}} {{}, {1}, {3}} {{}, {2}, {3}} {{}, {1}, {2}, {3}} {{}, {1}, {2}, {1, 2}} {{}, {1}, {3}, {1, 3}} {{}, {2}, {3}, {2, 3}} {{}, {1}, {2}, {3}, {1, 2}, {1, 3}} {{}, {1}, {2}, {3}, {1, 2}, {2, 3}} {{}, {1}, {2}, {3}, {1, 3}, {2, 3}} {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}} {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
Links
- W. M. B. Dukes, Tables of matroids.
- W. M. B. Dukes, Counting and Probability in Matroid Theory, Ph.D. Thesis, Trinity College, Dublin, 2000.
- W. M. B. Dukes, The number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
- W. M. B. Dukes, On the number of matroids on a finite set, Séminaire Lotharingien de Combinatoire 51 (2004), Article B51g.
- S. C. Locke, Matroids
- Index entries for sequences related to matroids
Comments