A101470 Erroneous version of A058831.
0, 0, 0, 6, 60, 810, 20160, 738360
Offset: 0
Keywords
References
- R. C. Read and N. C. Wormald, Number of labeled 4-regular graphs, J. Graph Theory, 4 (1980), 203-212.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a[0]:=1: b[0]:=0: c[0]:=0: d[0]:=0: e[0]:=0: f[0]:=0: g[0]:=0: h[0]:=0: i[0]:=0: for p from 1 to 21 do a[p]:=((p-1)*(2*p-9)*a[p-1]+(2*p-8)*b[p-1]+c[p-1])/3: b[p]:=(6*p*(p-1)*a[p-1]+4*p*b[p-1]+p*d[p-1])/2: c[p]:=(6*p*(p-3)*b[p-1]+8*p*c[p-1]+4*p*d[p-1]+p*e[p-1])/4: d[p]:=p*b[p-1]+p*f[p-1]:e[p]:=(4*p*c[p-1]+4*p*d[p-1]+2*p*g[p-1]+p*(p-1)*(p-2)*a[p-3])/2:f[p]:=p*(p-1)*((4*p-8)*a[p-2]+2*b[p-2]+h[p-2])/2: g[p]:=p*(p-1)*(4*(p-3)*b[p-2]+4*c[p-2]+4*d[p-2]+2*f[p-2]+i[p-2])/2:h[p]:=p*((2*p-2)*a[p-1]+b[p-1]): i[p]:=p*((2*p-4)*b[p-1]+2*c[p-1]+2*d[p-1]+f[p-1]+h[p-1]): od: seq(d[n],n=0..21); # A058832(n)=d[n] # Emeric Deutsch, Jan 26 2005
a[0]:=1: b[0]:=0: c[0]:=0: d[0]:=0: e[0]:=0: f[0]:=0: g[0]:=0: h[0]:=0: i[0]:=0: for p from 1 to 20 do a[p]:=((p-1)*(2*p-9)*a[p-1]+(2*p-8)*b[p-1]+c[p-1])/3: b[p]:=(6*p*(p-1)*a[p-1]+4*p*b[p-1]+p*d[p-1])/2: c[p]:=(6*p*(p-3)*b[p-1]+8*p*c[p-1]+4*p*d[p-1]+p*e[p-1])/4: d[p]:=p*b[p-1]+p*f[p-1]:e[p]:=(4*p*c[p-1]+4*p*d[p-1]+2*p*g[p-1]+p*(p-1)*(p-2)*a[p-3])/2:f[p]:=p*(p-1)*((4*p-8)*a[p-2]+2*b[p-2]+h[p-2])/2: g[p]:=p*(p-1)*(4*(p-3)*b[p-2]+4*c[p-2]+4*d[p-2]+2*f[p-2]+i[p-2])/2:h[p]:=p*((2*p-2)*a[p-1]+b[p-1]): i[p]:=p*((2*p-4)*b[p-1]+2*c[p-1]+2*d[p-1]+f[p-1]+h[p-1]): od: seq(b[n],n=0..20); # A058830(n)=b[n] - Emeric Deutsch, Jan 26 2005
a[0]:=1: b[0]:=0: c[0]:=0: d[0]:=0: e[0]:=0: f[0]:=0: g[0]:=0: h[0]:=0: i[0]:=0: for p from 1 to 20 do a[p]:=((p-1)*(2*p-9)*a[p-1]+(2*p-8)*b[p-1]+c[p-1])/3: b[p]:=(6*p*(p-1)*a[p-1]+4*p*b[p-1]+p*d[p-1])/2: c[p]:=(6*p*(p-3)*b[p-1]+8*p*c[p-1]+4*p*d[p-1]+p*e[p-1])/4: d[p]:=p*b[p-1]+p*f[p-1]:e[p]:=(4*p*c[p-1]+4*p*d[p-1]+2*p*g[p-1]+p*(p-1)*(p-2)*a[p-3])/2:f[p]:=p*(p-1)*((4*p-8)*a[p-2]+2*b[p-2]+h[p-2])/2: g[p]:=p*(p-1)*(4*(p-3)*b[p-2]+4*c[p-2]+4*d[p-2]+2*f[p-2]+i[p-2])/2:h[p]:=p*((2*p-2)*a[p-1]+b[p-1]): i[p]:=p*((2*p-4)*b[p-1]+2*c[p-1]+2*d[p-1]+f[p-1]+h[p-1]): od: seq(e[n],n=0..20); # A058833(n)=e[n] - Emeric Deutsch, Jan 26 2005
a[0]:=1: b[0]:=0: c[0]:=0: d[0]:=0: e[0]:=0: f[0]:=0: g[0]:=0: h[0]:=0: i[0]:=0: for p from 1 to 21 do a[p]:=((p-1)*(2*p-9)*a[p-1]+(2*p-8)*b[p-1]+c[p-1])/3: b[p]:=(6*p*(p-1)*a[p-1]+4*p*b[p-1]+p*d[p-1])/2: c[p]:=(6*p*(p-3)*b[p-1]+8*p*c[p-1]+4*p*d[p-1]+p*e[p-1])/4: d[p]:=p*b[p-1]+p*f[p-1]:e[p]:=(4*p*c[p-1]+4*p*d[p-1]+2*p*g[p-1]+p*(p-1)*(p-2)*a[p-3])/2:f[p]:=p*(p-1)*((4*p-8)*a[p-2]+2*b[p-2]+h[p-2])/2: g[p]:=p*(p-1)*(4*(p-3)*b[p-2]+4*c[p-2]+4*d[p-2]+2*f[p-2]+i[p-2])/2:h[p]:=p*((2*p-2)*a[p-1]+b[p-1]): i[p]:=p*((2*p-4)*b[p-1]+2*c[p-1]+2*d[p-1]+f[p-1]+h[p-1]): od: seq(f[n],n=0..21); # A058834(n)=f[n] - Emeric Deutsch, Jan 26 2005
a[0]:=1: b[0]:=0: c[0]:=0: d[0]:=0: e[0]:=0: f[0]:=0: g[0]:=0: h[0]:=0: i[0]:=0: for p from 1 to 20 do a[p]:=((p - 1)*(2*p - 9)*a[p - 1] + (2*p - 8)*b[p - 1] + c[p - 1])/3: b[p]:=(6*p*(p - 1)*a[p - 1] + 4*p*b[p - 1] + p*d[p - 1])/2: c[p]:=(6*p*(p - 3)*b[p - 1] + 8*p*c[p - 1] + 4*p*d[p - 1] + p*e[p - 1])/4: d[p]:=p*b[p - 1] + p*f[p - 1]:e[p]:=(4*p*c[p - 1] + 4*p*d[p - 1] + 2*p*g[p - 1] + p*(p - 1)*(p - 2)*a[p - 3])/2:f[p]:=p*(p - 1)*((4*p - 8)*a[p - 2] + 2*b[p - 2] + h[p - 2])/2: g[p]:=p*(p - 1)*(4*(p - 3)*b[p - 2] + 4*c[p - 2] + 4*d[p - 2] + 2*f[p - 2] + i[p - 2])/2:h[p]:=p*((2*p - 2)*a[p - 1] + b[p - 1]): i[p]:=p*((2*p - 4)*b[p - 1] + 2*c[p - 1] + 2*d[p - 1] + f[p - 1] + h[p - 1]): od: seq(g[n],n=0..20); # A058835(n)=g[n] - Emeric Deutsch, Jan 26 2005
a[0]:=1: b[0]:=0: c[0]:=0: d[0]:=0: e[0]:=0: f[0]:=0: g[0]:=0: h[0]:=0: i[0]:=0: for p from 1 to 20 do a[p]:=((p-1)*(2*p-9)*a[p-1]+(2*p-8)*b[p-1]+c[p-1])/3: b[p]:=(6*p*(p-1)*a[p-1]+4*p*b[p-1]+p*d[p-1])/2: c[p]:=(6*p*(p-3)*b[p-1]+8*p*c[p-1]+4*p*d[p-1]+p*e[p-1])/4: d[p]:=p*b[p-1]+p*f[p-1]:e[p]:=(4*p*c[p-1]+4*p*d[p-1]+2*p*g[p-1]+p*(p-1)*(p-2)*a[p-3])/2:f[p]:=p*(p-1)*((4*p-8)*a[p-2]+2*b[p-2]+h[p-2])/2: g[p]:=p*(p-1)*(4*(p-3)*b[p-2]+4*c[p-2]+4*d[p-2]+2*f[p-2]+i[p-2])/2:h[p]:=p*((2*p-2)*a[p-1]+b[p-1]): i[p]:=p*((2*p-4)*b[p-1]+2*c[p-1]+2*d[p-1]+f[p-1]+h[p-1]): od: seq(h[n],n=0..20); # A058836(n)=h[n] - Emeric Deutsch, Jan 26 2005
a[0]:=1: b[0]:=0: c[0]:=0: d[0]:=0: e[0]:=0: f[0]:=0: g[0]:=0: h[0]:=0: i[0]:=0: for p from 1 to 20 do a[p]:=((p-1)*(2*p-9)*a[p-1]+(2*p-8)*b[p-1]+c[p-1])/3: b[p]:=(6*p*(p-1)*a[p-1]+4*p*b[p-1]+p*d[p-1])/2: c[p]:=(6*p*(p-3)*b[p-1]+8*p*c[p-1]+4*p*d[p-1]+p*e[p-1])/4: d[p]:=p*b[p-1]+p*f[p-1]:e[p]:=(4*p*c[p-1]+4*p*d[p-1]+2*p*g[p-1]+p*(p-1)*(p-2)*a[p-3])/2:f[p]:=p*(p-1)*((4*p-8)*a[p-2]+2*b[p-2]+h[p-2])/2: g[p]:=p*(p-1)*(4*(p-3)*b[p-2]+4*c[p-2]+4*d[p-2]+2*f[p-2]+i[p-2])/2:h[p]:=p*((2*p-2)*a[p-1]+b[p-1]): i[p]:=p*((2*p-4)*b[p-1]+2*c[p-1]+2*d[p-1]+f[p-1]+h[p-1]): od: seq(i[n],n=0..20); # A058837(n)=i[n] - Emeric Deutsch, Jan 26 2005
Comments