A058878 Triangle T(n,k) is the number of labeled graphs of even degree with n nodes and k edges (n >= 0, 0 <= k <= n(n-1)/2).
1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 4, 3, 0, 0, 1, 0, 0, 10, 15, 12, 15, 10, 0, 0, 1, 1, 0, 0, 20, 45, 72, 160, 240, 195, 120, 96, 60, 15, 0, 0, 0, 1, 0, 0, 35, 105, 252, 805, 1935, 3255, 4515, 5481, 5481, 4515, 3255, 1935, 805, 252, 105, 35, 0, 0, 1, 1, 0, 0, 56
Offset: 0
Examples
Irregular triangle T(n,k) (with rows n >= 0 and columns k = 0..n*(n-1)/2) begins 1; 1, 1, 0, 1, 0, 0, 1; 1, 0, 0, 4, 3, 0, 0; 1, 0, 0, 10, 15, 12, 15, 10, 0, 0, 1; 1, 0, 0, 20, 45, 72, 160, 240, 195, 120, 96, 60, 15, 0, 0, 0; ...
References
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 13, Eq. (1.4.7).
Links
- P. J. Cameron, Cohomological aspects of two-graphs, Math. Zeit., 157 (1977), 101-119; see Proposition 8.5, p. 117.
- C. L. Mallows and N. J. A. Sloane (1975), Two-graphs, switching classes and Euler graphs are equal in number, SIAM Journal on Applied Mathematics, 28(4) (1975), 876-880.
- Math Stackexchange, How to find the number of perfect matchings in complete graphs?, August 31, 2011.
- Math Stackexchange, Is it possible disconnected graph has euler circuit? [sic], August 30, 2015.
- Ronald C. Read, Euler graphs on labelled nodes, Canadian Journal of Mathematics, 14 (1962), 482-486.
- Wikipedia, Eulerian path.
Programs
-
Maple
w := p->expand(simplify(2^(-p)*(1+x)^(p*(p-1)/2)*add(binomial(p,n)*( (1-x)/(1+x))^(n*(p-n)), n=0..p))); T := (n,k)->coeff(w(n),x,k);
-
Mathematica
w[p_] := 2^-p*(1+x)^(p*(p-1)/2)*Sum[Binomial[p, n]*((1-x)/(1+x))^(n*(p-n)), {n, 0, p}]; T[n_, k_] := SeriesCoefficient[w[n], {x, 0, k}]; Table[T[n, k], {n, 0, 8}, {k, 0, n(n-1)/2}] // Flatten (* Jean-François Alcover, Jan 12 2015, translated from Maple *) (* Edited by Petros Hadjicostas, Feb 18 2021 to make sure the lengths of rows n = 0, 1, 2 are n*(n-1)/2 + 1 = 1, 1, 2, respectively. *)
Formula
T(n,k) = [x^k] (2^(-n) * (1+x)^(n*(n-1)/2) * Sum_{s=0..n} binomial(n, s)*((1 -x)/(1+x))^(s*(n-s))).
From Petros Hadjicostas, Feb 18 2021: (Start)
T(n,k) = (1/2^n) * Sum_{s=0..n} binomial(n,s) * Sum_{t=0..k} (-1)^t * binomial(s*(n-s), t) * binomial(binomial(s,2) + binomial(n-s, 2), k-t) for n >= 0 and 0 <= k <= n*(n-1)/2.
T(n, n*(n-1)/2) = 1 if n is odd.
T(n, k) = 0 if n is even and n*(n-1)/2 - n/2 + 1 <= k < n*(n-1)/2.
T(n, n*(n-1)/2 - n/2) = A001147(n/2) if n is even.
T(n,k) = A054669(n,k) for n >= 0 and 0 <= k <= n*(n-1)/2 - (n/2)*[0 == n mod 2].
T(n, n*(n-1)/2 - k) = T(n,k) for 0 <= k <= n*(n-1)/2 if n is odd. (End)
Extensions
Rows 0-2 modified by Petros Hadjicostas, Feb 17 2021 so that row n has n*(n-1)/2 numbers
Comments