A058879 Triangle read by rows: T(n,k) = number of connected graphs with one cycle of length m = n - k + 1 and n nodes (n >= 3 and 1 <= k <= n - 2).
1, 1, 1, 1, 1, 3, 1, 1, 4, 7, 1, 1, 4, 9, 18, 1, 1, 5, 10, 28, 44, 1, 1, 5, 13, 32, 71, 117, 1, 1, 6, 14, 45, 89, 202, 299, 1, 1, 6, 17, 52, 130, 264, 542, 793, 1, 1, 7, 19, 69, 163, 413, 751, 1507, 2095, 1, 1, 7, 22, 79, 224, 544, 1221, 2179, 4114, 5607
Offset: 3
Examples
Triangle begins: 1; 1, 1; 1, 1, 3; 1, 1, 4, 7; 1, 1, 4, 9, 18;
References
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 69, (3.4.1).
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150, Table 9.
Links
- Washington Bomfim, The five unicyclic graphs of order 9 with a cycle of length 7: T(9,3)=5.
Programs
-
Mathematica
Needs["NumericalDifferentialEquationAnalysis`"]; t[n_, k_] := Block[{x}, Coefficient[CycleIndexPolynomial[DihedralGroup[n + 1 - k], Table[ButcherTreeCount[n].x^(p Range[n]), {p, n + 1 - k}]], x, n]]; Table[t[n, k], {n, 13}, {k, 1, n - 2}] // Flatten (* requires Mathematica 9+; Andrey Zabolotskiy, May 12 2017 *)
Formula
T(n, k) = [x^n] Z(D_{n+1-k}; t(x)) where t(x) is the g.f. of A000081 and Z(D_m) is the cycle index of the dihedral group of order m. - Sean A. Irvine, Sep 03 2022
Extensions
More terms from Washington Bomfim, May 12 2008
More terms from Washington Bomfim, Jul 06 2008
Rows n = 11 to 13 added, name and offset corrected by Andrey Zabolotskiy, May 12 2017
Comments