A058942 Triangle of coefficients of Gandhi polynomials.
1, 1, 1, 2, 4, 2, 8, 22, 20, 6, 56, 184, 224, 120, 24, 608, 2248, 3272, 2352, 840, 120, 9440, 38080, 62768, 54336, 26208, 6720, 720, 198272, 856480, 1550528, 1531344, 896064, 312480, 60480, 5040, 5410688, 24719488, 48207488, 52633344, 35371776
Offset: 1
Examples
Triangle starts: [1] [1, 1] [2, 4, 2] [8, 22, 20, 6] [56, 184, 224, 120, 24] [608, 2248, 3272, 2352, 840, 120] [9440, 38080, 62768, 54336, 26208, 6720, 720] [198272, 856480, 1550528, 1531344, 896064, 312480, 60480, 5040]
Links
- T. D. Noe, Rows n = 1..50 of triangle, flattened
Programs
-
Mathematica
c[1][x_] = 1; c[n_][x_] := c[n][x] = (x+1)*((x+1)*c[n-1][x+1] - x*c[n-1][x]); Table[ CoefficientList[ c[n][x], x], {n, 9}] // Flatten (* Jean-François Alcover, Oct 09 2012 *)
-
Sage
# uses[delehamdelta from A084938] def A058942_triangle(n) : A = [((i+1)//2)^2 for i in (1..n)] B = [((i+1)//2) for i in (1..n)] return delehamdelta(A, B) A058942_triangle(10) # Peter Luschny, Nov 09 2019
Formula
C_1(x) = 1; C_n(x) = (x+1)*((x+1)*C_n-1(x+1) - x*C_n-1(x)).
Triangle T(n, k), read by rows; given by [1, 1, 4, 4, 9, 9, 16, 16, 25, ...] DELTA [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 24 2005
Comments