A058943 Coefficients of irreducible polynomials over GF(2) listed in lexicographic order.
10, 11, 111, 1011, 1101, 10011, 11001, 11111, 100101, 101001, 101111, 110111, 111011, 111101, 1000011, 1001001, 1010111, 1011011, 1100001, 1100111, 1101101, 1110011, 1110101, 10000011, 10001001, 10001111, 10010001
Offset: 1
Examples
The first few are x, x+1; x^2+x+1; x^3+x+1, x^3+x^2+1; ... Note that x is irreducible but not primitive.
References
- R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, 1983, Table C, pp. 553-555.
Links
- T. D. Noe, Table of n, a(n) for n=1..1377 (through degree 13)
- R. Church, Tables of irreducible polynomials for the first four prime moduli, Annals Math., 36 (1935), 198-209.
- F. Ruskey, Irreducible and Primitive Polynomials over GF(2)
- Index entries for sequences containing GF(2)[X]-polynomials
Crossrefs
Programs
-
Mathematica
Do[a = Reverse[ IntegerDigits[n, 2]]; b = {0}; l = Length[a]; k = 1; While[k < l + 1, b = Append[b, a[[k]]*x^(k - 1) ]; k++ ]; b = Apply[Plus, b]; c = Factor[b, Modulus -> 2]; If[b == c, Print[ FromDigits[ IntegerDigits[n, 2]]]], {n, 3, 250, 2} ]
-
PARI
seq(N, p=2, maxdeg=oo) = { my(a = List(), k=0, d=0); while (d++ <= maxdeg, for (n=p^d, 2*p^d-1, my(f=Mod(Pol(digits(n,p)),p)); if(polisirreducible(f), listput(a, subst(lift(f),'x,10)); k++); if(k >= N, break(2)))); Vec(a); }; seq(27) \\ Gheorghe Coserea, May 28 2018
Comments