A058973 First integer reached in A058972.
1, 2, 3, 2, 4, 2, 5, 9, 2, 4, 8, 8, 9, 9, 10, 8, 8, 11, 2, 2, 12, 2, 13, 13, 14, 15, 4, 16, 2, 17, 4, 35, 19, 8, 23, 9, 8, 22, 25, 2, 26, 25, 2, 2, 24, 28, 8, 10, 4, 29, 2, 26, 29, 2, 2, 35, 33, 6, 2, 38, 33, 33, 40, 2, 68, 4, 8, 44, 41, 8, 4, 46, 35, 43, 49, 50, 2, 42, 8, 40, 58, 4, 59, 43, 61
Offset: 1
Examples
A058972(1) = 3: f(3/1) = 3/3 = 1 = a(1); A058972(2) = 9: f(9/1) = 8/4 = 2 = a(2); A058972(3) = 15: f(15/1) = 15/5 = 3 = a(3); A058972(4) = 24: f(24/1) = 6/3 = 2 = a(4).
Links
- P. Schogt, The Wild Number Problem: math or fiction?, arXiv preprint arXiv:1211.6583 [math.HO], 2012. - From _N. J. A. Sloane_, Jan 03 2013
Crossrefs
Cf. A058972.
Programs
-
PARI
f2(p,q) = (sigma(p+q)-p-q)/numdiv(p+q); f1(r) = f2(numerator(r), denominator(r)); loop(list) = {my(v=Vecrev(list)); for (i=2, #v, if (v[i] == v[1], return(1)););} ff(n) = {my(ok=0, m=f2(n,1), list=List()); while(denominator(m) != 1, m = f1(m); listput(list, m); if (loop(list), return (0));); return(m);} lista(nn) = {for (n=1, nn, my(x=ff(n)); if (x, print1(x, ", ")););} \\ Michel Marcus, Feb 09 2022
Extensions
Corrected and extended by Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 22 2003