A059024 Triangle of Stirling numbers of order 5.
1, 1, 1, 1, 1, 1, 126, 1, 462, 1, 1254, 1, 3003, 1, 6721, 1, 14443, 126126, 1, 30251, 1009008, 1, 62322, 5309304, 1, 127024, 23075052, 1, 257108, 89791416, 1, 518092, 325355316, 488864376, 1, 1041029, 1122632043, 6844101264, 1, 2088043
Offset: 5
Examples
There are 126 ways of partitioning a set N of cardinality 10 into 2 blocks each of cardinality at least 5, so S_5(10,2) = 126. Triangle begins: 1; 1; 1; 1; 1; 1, 126; 1, 462; 1, 1254; 1, 3003; 1, 6721; 1, 14443, 126126; 1, 30251, 1009008; 1, 62322, 5309304; 1, 127024, 23075052; 1, 257108, 89791416; 1, 518092, 325355316, 488864376; ...
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 222.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 76.
Links
- Alois P. Heinz, Rows n = 5..320, flattened
- A. E. Fekete, Apropos two notes on notation, Amer. Math. Monthly, 101 (1994), 771-778.
Programs
-
Maple
T:= proc(n,k) option remember; `if`(k<1 or k>n/5, 0, `if`(k=1, 1, k*T(n-1, k)+binomial(n-1, 4)*T(n-5, k-1))) end: seq(seq(T(n, k), k=1..n/5), n=5..25); # Alois P. Heinz, Aug 18 2017
-
Mathematica
S5[n_ /; 5 <= n <= 9, 1] = 1; S5[n_, k_] /; 1 <= k <= Floor[n/5] := S5[n, k] = k*S5[n-1, k] + Binomial[n-1, 4]*S5[n-5, k-1]; S5[, ] = 0; Flatten[ Table[ S5[n, k], {n, 5, 25}, {k, 1, Floor[n/5]}]] (* Jean-François Alcover, Feb 21 2012 *)
Formula
S_r(n+1, k) = k*S_r(n, k) + binomial(n, r-1)*S_r(n-r+1, k-1); for this sequence, r=5.
G.f.: Sum_{n>=0, k>=0} S_r(n,k)*u^k*t^n/n! = exp(u(e^t-sum(t^i/i!, i=0..r-1))).
T(n,k) = Sum_{j=0..min(n/4,k)} (-1)^j*n!/(24^j*j!*(n-4j)!)*S_4(n-4j,k-j), where S_4 are the 4-associated Stirling numbers of the second kind A059023. - Fabián Pereyra, Feb 21 2022
Comments