cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059024 Triangle of Stirling numbers of order 5.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 126, 1, 462, 1, 1254, 1, 3003, 1, 6721, 1, 14443, 126126, 1, 30251, 1009008, 1, 62322, 5309304, 1, 127024, 23075052, 1, 257108, 89791416, 1, 518092, 325355316, 488864376, 1, 1041029, 1122632043, 6844101264, 1, 2088043
Offset: 5

Views

Author

Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 14 2000

Keywords

Comments

The number of partitions of the set N, |N|=n, into k blocks, all of cardinality greater than or equal to 5. This is the 5-associated Stirling number of the second kind.
This is entered as a triangular array. The entries S_5(n,k) are zero for 5k>n, so these values are omitted. Initial entry in sequence is S_5(5,1).
Rows are of lengths 1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,...

Examples

			There are 126 ways of partitioning a set N of cardinality 10 into 2 blocks each of cardinality at least 5, so S_5(10,2) = 126.
Triangle begins:
1;
1;
1;
1;
1;
1,    126;
1,    462;
1,   1254;
1,   3003;
1,   6721;
1,  14443,    126126;
1,  30251,   1009008;
1,  62322,   5309304;
1, 127024,  23075052;
1, 257108,  89791416;
1, 518092, 325355316, 488864376;
...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 222.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 76.

Crossrefs

Row sums give A057814.

Programs

  • Maple
    T:= proc(n,k) option remember; `if`(k<1 or k>n/5, 0,
          `if`(k=1, 1, k*T(n-1, k)+binomial(n-1, 4)*T(n-5, k-1)))
        end:
    seq(seq(T(n, k), k=1..n/5), n=5..25);  # Alois P. Heinz, Aug 18 2017
  • Mathematica
    S5[n_ /; 5 <= n <= 9, 1] = 1; S5[n_, k_] /; 1 <= k <= Floor[n/5] := S5[n, k] = k*S5[n-1, k] + Binomial[n-1, 4]*S5[n-5, k-1]; S5[, ] = 0; Flatten[ Table[ S5[n, k], {n, 5, 25}, {k, 1, Floor[n/5]}]] (* Jean-François Alcover, Feb 21 2012 *)

Formula

S_r(n+1, k) = k*S_r(n, k) + binomial(n, r-1)*S_r(n-r+1, k-1); for this sequence, r=5.
G.f.: Sum_{n>=0, k>=0} S_r(n,k)*u^k*t^n/n! = exp(u(e^t-sum(t^i/i!, i=0..r-1))).
T(n,k) = Sum_{j=0..min(n/4,k)} (-1)^j*n!/(24^j*j!*(n-4j)!)*S_4(n-4j,k-j), where S_4 are the 4-associated Stirling numbers of the second kind A059023. - Fabián Pereyra, Feb 21 2022