A059032 Another variant of Boustrophedon transform applied to 1, 0, 0, 0, ...
1, 1, 3, 13, 71, 487, 3965, 37306, 398048, 4748201, 62627000, 905067008, 14223441093, 241516427253, 4406723053134, 85987611417777, 1786851267779817, 39397336701986187, 918633226468153628, 22585761594590716490, 583972625166308889970
Offset: 0
Keywords
Examples
Triangle begins ........1 ......0...1 ....3...2...0 ..0...7...11.13 71..67..53..28..0 where (say) 53 = 28 + (7+11+3+2+0+0+1+1)
Programs
-
Maple
T059032 := proc(i,j) option remember; local r,s,t1; if i=0 and j mod 2 = 0 then RETURN(b[j+1]); fi; if j=0 and i mod 2 = 1 then RETURN(b[i+1]); fi; if i+j mod 2 = 1 then t1 := T059032(i+1,j-1); for r from 0 to i do for s from 0 to j do if r+s <> i+j then t1 := t1+T059032(r,s); fi; od: od: else t1 := T059032(i-1,j+1); for r from 0 to i do for s from 0 to j do if r+s <> i+j then t1 := t1+T059032(r,s); fi; od: od: fi; RETURN(t1); end; # that makes the triangle b := [1,seq(0,i=1..200)]; A059032 := n->if n mod 2 = 0 then T059032(n,0) else T059032(0,n); fi; # produces the transform
Comments