cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A059036 In a triangle of numbers (such as that in A059032, A059033, A059034) how many entries lie above position (n,k)? Answer: T(n,k) = (n+1)*(k+1)-1 (n >= 0, k >= 0).

Original entry on oeis.org

0, 1, 1, 2, 3, 2, 3, 5, 5, 3, 4, 7, 8, 7, 4, 5, 9, 11, 11, 9, 5, 6, 11, 14, 15, 14, 11, 6, 7, 13, 17, 19, 19, 17, 13, 7, 8, 15, 20, 23, 24, 23, 20, 15, 8, 9, 17, 23, 27, 29, 29, 27, 23, 17, 9, 10, 19, 26, 31, 34, 35, 34, 31, 26, 19, 10, 11, 21, 29, 35, 39, 41
Offset: 0

Views

Author

N. J. A. Sloane, Feb 13 2001

Keywords

Examples

			As an infinite triangular array:
  0
  1   1
  2   3   2
  3   5   5   3
  4   7   8   7   4
  5   9  11  11   9   5
As an infinite square array (matrix):
  0   1   2   3   4   5
  1   3   5   7   9  11
  2   5   8  11  14  17
  3   7  11  15  19  23
  4   9  14  19  24  29
  5  11  17  23  29  35
		

Crossrefs

T(n, k) = A003991(n, k) - 1.

Programs

Formula

T(n, k) = max(T(n-1, k-1), T(n-1, k)) + min(k, n-k+1). - Jon Perry, Aug 05 2004
E.g.f.: exp(x+y)(x+y+xy) (as a square array read by antidiagonals). - Paul Barry, Sep 24 2004
From Michael Somos, Jul 28 2015: (Start)
Row sums = Sum_{k=0..n} T(n-k, k) = A005581(n+1).
T(n, k) = T(k, n) = T(-2-n, -2-k) for all n, k in Z.
Sum_{n, k >= 0} x^T(n, k) = f(x) / x where f() is the g.f. for A000005. (End)

A059037 The transformation of A059032 applied to 1, 1, 1, 1, ...

Original entry on oeis.org

1, 2, 7, 31, 174, 1194, 9729, 91531, 976635, 11649919, 153658286, 2220622973, 34897864282, 592571575477, 10812096348481, 210974531531348, 4384121200214696, 96663164984512948, 2253908578415276547, 55415197638867035176, 1432803507864157284463
Offset: 0

Views

Author

N. J. A. Sloane, Feb 13 2001

Keywords

Examples

			The corresponding triangle begins
..........1
........1...2
......7...5...1
....1..17..27..31
		

Crossrefs

Programs

  • Maple
    See A059032 for Maple code.

A059033 Triangle in A059032 read by rows from left to right.

Original entry on oeis.org

1, 0, 1, 3, 2, 0, 0, 7, 11, 13, 71, 67, 53, 28, 0, 0, 152, 297, 416, 472, 487, 3965, 3890, 3586, 2921, 2022, 1015, 0, 0, 8159, 16300, 23929, 30243, 34774, 36804, 37306, 398048, 394008, 377690, 341125, 289377, 225082, 152249, 76140, 0
Offset: 0

Views

Author

N. J. A. Sloane, Feb 13 2001

Keywords

Crossrefs

A059034 Triangle in A059032 read by rows in natural order.

Original entry on oeis.org

1, 0, 1, 0, 2, 3, 0, 7, 11, 13, 0, 28, 53, 67, 71, 0, 152, 297, 416, 472, 487, 0, 1015, 2022, 2921, 3586, 3890, 3965, 0, 8159, 16300, 23929, 30243, 34774, 36804, 37306, 0, 76140, 152249, 225082, 289377, 341125, 377690, 394008, 398048
Offset: 0

Views

Author

N. J. A. Sloane, Feb 13 2001

Keywords

Examples

			Triangle begins
1;
0, 1;
0, 2, 3;
0, 7, 11, 13;
0, 28, 53, 67, 71;
		

Crossrefs

A059035 Row sums of A059032.

Original entry on oeis.org

1, 1, 5, 31, 219, 1824, 17399, 187515, 2253719, 29901003, 434160685, 6849337806, 116676871558, 2134676852102, 41750401011910, 869331806970497, 19201093398122590, 448406874976429839, 11039773995438108342, 285791694464806445199
Offset: 0

Views

Author

N. J. A. Sloane, Feb 13 2001

Keywords

Showing 1-5 of 5 results.