cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A278910 Triangle of order m: C(n,k) = k*(n-k+1)^(k+m)+n-k, 0 <= k <= n, m = 0, read by rows.

Original entry on oeis.org

0, 1, 1, 2, 3, 2, 3, 5, 9, 3, 4, 7, 20, 25, 4, 5, 9, 35, 83, 65, 5, 6, 11, 54, 195, 326, 161, 6, 7, 13, 77, 379, 1027, 1217, 385, 7, 8, 15, 104, 653, 2504, 5123, 4376, 897, 8, 9, 17, 135, 1035, 5189, 15629, 24579, 15311, 2049, 9, 10, 19, 170, 1543, 9610, 38885, 93754, 114691, 52490, 4609, 10
Offset: 0

Views

Author

Juri-Stepan Gerasimov, Nov 30 2016

Keywords

Examples

			As an infinite triangular array:
0
1   1
2   3   2
3   5   9    3
4   7  20   25     4
5   9  35   83    65      5
As an infinite square array (matrix):
0   1   2    3     4      5
1   3   9   25    65    161
2   5  20   83   326   1217
3   7  35  195  1027   5123
4   9  54  379  2504  15629
5  11  77  653  5189  38885
		

Crossrefs

Cf. A002064.
Cf. Triangles of order m: A003056 (m = -k), A059036 (m = 1-k).

Programs

  • Magma
    /* As triangle */ [[k*(n-k+1)^k+n-k: k in [0..n]]: n in [0..10]];
  • Maple
    A278910 := proc(n,k)
        k*(n-k+1)^k+n-k ;
    end proc:
    seq(seq(A278910(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Dec 02 2016

A281334 Triangle read by rows: T(n, k) = (n - k)*(k + 1)^3 + k, 0 <= k <= n.

Original entry on oeis.org

0, 1, 1, 2, 9, 2, 3, 17, 29, 3, 4, 25, 56, 67, 4, 5, 33, 83, 131, 129, 5, 6, 41, 110, 195, 254, 221, 6, 7, 49, 137, 259, 379, 437, 349, 7, 8, 57, 164, 323, 504, 653, 692, 519, 8, 9, 65, 191, 387, 629, 869, 1035, 1031, 737, 9, 10, 73, 218, 451, 754, 1085, 1378, 1543, 1466, 1009, 10
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jan 23 2017

Keywords

Examples

			Triangle begins:
   0;
   1,    1;
   2,    9,    2;
   3,   17,   29,    3;
   4,   25,   56,   67,    4;
   5,   33,   83,  131,  129,    5;
   6,   41,  110,  195,  254,  221,    6;
   7,   49,  137,  259,  379,  437,  349,    7;
   8,   57,  164,  323,  504,  653,  692,  519,    8;
   9,   65,  191,  387,  629,  869, 1035, 1031,  737,    9;
  10,   73,  218,  451,  754, 1085, 1378, 1543, 1466, 1009,   10;
  ...
		

Crossrefs

Cf. Triangle read by rows: T(n,k) = (n-k)*(k+1)^m+k: A003056 (m = 0), A059036 (m = 1), A274602 (m = 2), this sequence (m = 3).
Cf. A001477 (column 0), A017077 (column 1), A281546 (column 2), A242604 (middle diagonal).

Programs

  • Magma
    /* As triangle */ [[(n-k)*(k+1)^3+k: k in [1..n]]: n in [0..10]];
    
  • Mathematica
    t[n_, k_] := (n - k)*(k + 1)^3 + k; Table[ t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Robert G. Wilson v, Feb 09 2017 *)
  • PARI
    for(n=0,10,for(k=0,n,print1((n-k)*(k+1)^3+k,", "))) \\ Derek Orr, Feb 26 2017

Formula

Row sums sum_{k>=0} T(n,k) = n*(n+1)*(3*n^3+12*n^2+13*n+32)/60. - R. J. Mathar, Mar 19 2017

A274602 Triangle read by rows: T(n,k) = k*(n-k+1)^2 + n - k, 0 <= k <= n.

Original entry on oeis.org

0, 1, 1, 2, 5, 2, 3, 11, 9, 3, 4, 19, 20, 13, 4, 5, 29, 35, 29, 17, 5, 6, 41, 54, 51, 38, 21, 6, 7, 55, 77, 79, 67, 47, 25, 7, 8, 71, 104, 113, 104, 83, 56, 29, 8, 9, 89, 135, 153, 149, 129, 99, 65, 33, 9, 10, 109, 170, 199, 202, 185, 154, 115, 74, 37, 10
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 01 2016

Keywords

Comments

Mirrored version of a(n) is T(n,k) = (n-k)*(k+1)^2+k, 0 <= k <= n, read by rows:
0
1 1
2 5 2
3 9 11 3
4 13 20 19 4
5 17 29 35 29 5
As an infinite square array (matrix) with comments:
0 1 2 3 4 5 A001477
1 5 11 19 29 41 A028387
2 9 20 35 54 77 A014107
3 13 29 51 79 113 A144391
4 17 38 67 104 149 A182868
5 21 47 83 129 185

Examples

			0; 1,1; 2,5,2; 3,11,9,3; 4,19,20,13,4; 5,29,35,29,17,5; ...
As an infinite triangular array:
0
1   1
2   5   2
3  11   9    3
4  19  20   13    4
5  29  35   29   17    5
As an infinite square array (matrix) with comments:
0   1   2    3    4    5                   A001477
1   5   9   13   17   21                   A016813
2  11  20   29   38   47                   A017185
3  19  35   51   67   83
4  29  54   79  104  129
5  41  77  113  149  185
		

Crossrefs

Cf. Triangle read by rows: T(n,k) = k*(n-k+1)^m+n-k, 0 <= k <= n: A003056 (m = 0), A059036 (m = 1), A278910 (m = k).

Programs

  • Magma
    /* As triangle */ [[k*(n-k+1)^2+n-k: k in [0..n]]: n in [0..10]];
  • Mathematica
    Table[k (n - k + 1)^(k + #) + n - k &[2 - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 02 2016 *)

A335984 Numbers m such that more than half the distinct positive terms of the sequence -k^2 + m*k - 1 are primes.

Original entry on oeis.org

4, 5, 7, 9, 11, 19, 21, 31, 33, 39, 49, 51, 81, 99, 101, 123, 129, 159, 171, 177, 189, 231, 291, 441, 879, 1011, 2751
Offset: 1

Views

Author

Robert Israel, Jul 03 2020

Keywords

Comments

Numbers m such that more than half the distinct terms in row m-2 of the triangular array A059036 are prime.
All positive terms of the sequence are prime for m = 1, 2, 4, 5, 9 and 21.
There are no more terms below 200000. - Pontus von Brömssen, Jul 06 2020
Numbers m such that A109909(m) > m/4. - Pontus von Brömssen, May 09 2021

Examples

			7 is in the sequence because with g(k) = -k^2+7*k-1, the positive terms of the sequence g(k) are 5=g(1), 9=g(2) and 11=g(3), and two out of the three (5 and 9) are prime.
		

Crossrefs

Programs

  • Maple
    filter:= n -> nops(select(isprime, [seq(n*x-x^2-1,x=1..n/2)])) > 1/2*floor(n/2):
    select(filter, [$1..10000]);

A127738 Triangle read by rows: the matrix product A004736 * A127701 of two triangular matrices.

Original entry on oeis.org

1, 3, 2, 5, 5, 3, 7, 8, 7, 4, 9, 11, 11, 9, 5, 11, 14, 15, 14, 11, 6, 13, 17, 19, 19, 17, 13, 7, 15, 20, 23, 24, 23, 20, 15, 8, 17, 23, 27, 29, 29, 27, 23, 17, 9, 19, 26, 31, 34, 35, 34, 31, 26, 19, 10
Offset: 1

Views

Author

Gary W. Adamson, Jan 27 2007

Keywords

Comments

Left column = A028387: (1, 5, 11, 19, 29, 41, 55, ...).

Examples

			First few rows of the triangle:
   1;
   3,  2;
   5,  5,  3;
   7,  8,  7,  4;
   9, 11, 11,  9,  5;
  11, 14, 15, 14, 11,  6;
  13, 17, 19, 19, 17, 13,  7;
  ...
		

Crossrefs

Cf. A004736, A127701, A008778 (row sums), A028387.

Formula

T(n,k) = Sum_{j=k..n} A004736(n,j)*A127701(j,k). - R. J. Mathar, Aug 31 2022
T(n,k) = k+(k+1)*(n-k) = n+k*(n-k) = n +A094053(n,k) = A059036(n,k). - R. J. Mathar, Aug 31 2022
Showing 1-5 of 5 results.