A059058 Card-matching numbers (Dinner-Diner matching numbers).
1, 0, 0, 0, 1, 1, 0, 9, 0, 9, 0, 1, 56, 216, 378, 435, 324, 189, 54, 27, 0, 1, 13833, 49464, 84510, 90944, 69039, 38448, 16476, 5184, 1431, 216, 54, 0, 1, 6699824, 23123880, 38358540, 40563765, 30573900, 17399178, 7723640
Offset: 0
Examples
There are 9 ways of matching exactly 2 cards when there are 2 different kinds of cards, 3 of each in each of the two decks so T(2,2)=9.
References
- F. N. David and D. E. Barton, Combinatorial Chance, Hafner, NY, 1962, Ch. 7 and Ch. 12.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 174-178.
- R. P. Stanley, Enumerative Combinatorics Volume I, Cambridge University Press, 1997, p. 71.
Links
- Vincenzo Librandi, Rows n = 1..30, flattened
- F. F. Knudsen and I. Skau, On the Asymptotic Solution of a Card-Matching Problem, Mathematics Magazine 69 (1996), 190-197.
- Barbara H. Margolius, Dinner-Diner Matching Probabilities
- B. H. Margolius, The Dinner-Diner Matching Problem, Mathematics Magazine, 76 (2003), 107-118.
- S. G. Penrice, Derangements, permanents and Christmas presents, The American Mathematical Monthly 98(1991), 617-620.
- Index entries for sequences related to card matching
Programs
-
Maple
p := (x,k)->k!^2*sum(x^j/((k-j)!^2*j!),j=0..k); R := (x,n,k)->p(x,k)^n; f := (t,n,k)->sum(coeff(R(x,n,k),x,j)*(t-1)^j*(n*k-j)!,j=0..n*k); for n from 0 to 6 do seq(coeff(f(t,n,3),t,m)/3!^n,m=0..3*n); od;
-
Mathematica
p[x_, k_] := k!^2*Sum[ x^j/((k-j)!^2*j!), {j, 0, k}]; f[t_, n_, k_] := Sum[ Coefficient[ p[x, k]^n, x, j]*(t-1)^j*(n*k-j)!, {j, 0, n*k}]; Flatten[ Table[ Coefficient[ f[t, n, 3], t, m]/3!^n, {n, 0, 6}, {m, 0, 3n}]] (* Jean-François Alcover, Jan 31 2012, after Maple *)
Formula
G.f.: sum(coeff(R(x, n, k), x, j)*(t-1)^j*(n*k-j)!, j=0..n*k) where n is the number of kinds of cards, k is the number of cards of each kind (here k is 3) and R(x, n, k) is the rook polynomial given by R(x, n, k)=(k!^2*sum(x^j/((k-j)!^2*j!))^n (see Stanley or Riordan). coeff(R(x, n, k), x, j) indicates the j-th coefficient on x of the rook polynomial.
Comments