A059068 Card-matching numbers (Dinner-Diner matching numbers).
1, 9, 8, 6, 0, 1, 297, 672, 736, 480, 246, 64, 24, 0, 1, 13833, 49464, 84510, 90944, 69039, 38448, 16476, 5184, 1431, 216, 54, 0, 1, 748521, 3662976, 8607744, 12880512, 13731616, 11042688, 6928704, 3458432, 1395126
Offset: 0
Examples
There are 736 ways of matching exactly 2 cards when there are 2 cards of each kind and 4 kinds of card so T(2,2)=736. Triangle begins: 1; 9, 8, 6, 0, 1; 297, 672, 736, 480, 246, 64, 24, 0, 1; 13833, 49464, 84510, 90944, 69039, 38448, 16476, 5184, 1431, 216, 54, 0, 1; ...
References
- F. N. David and D. E. Barton, Combinatorial Chance, Hafner, NY, 1962, Ch. 7 and Ch. 12.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 174-178.
- R. P. Stanley, Enumerative Combinatorics Volume I, Cambridge University Press, 1997, p. 71.
Links
- F. F. Knudsen and I. Skau, On the Asymptotic Solution of a Card-Matching Problem, Mathematics Magazine 69 (1996), 190-197.
- Barbara H. Margolius, Dinner-Diner Matching Probabilities
- B. H. Margolius, The Dinner-Diner Matching Problem, Mathematics Magazine, 76 (2003), 107-118.
- S. G. Penrice, Derangements, permanents and Christmas presents, The American Mathematical Monthly 98(1991), 617-620.
- Index entries for sequences related to card matching
Programs
-
Maple
p := (x,k)->k!^2*sum(x^j/((k-j)!^2*j!),j=0..k); R := (x,n,k)->p(x,k)^n; f := (t,n,k)->sum(coeff(R(x,n,k),x,j)*(t-1)^j*(n*k-j)!,j=0..n*k); for n from 0 to 5 do seq(coeff(f(t,4,n),t,m)/n!^4,m=0..4*n); od;
-
Mathematica
p[x_, k_] := k!^2*Sum[x^j/((k-j)!^2*j!), {j, 0, k}]; r[x_, n_, k_] := p[x, k]^n; f[t_, n_, k_] := Sum[ Coefficient[r[x, n, k], x, j]*(t-1)^j*(n*k-j)!, {j, 0, n*k}]; Table[ Coefficient[f[t, 4, n], t, m]/n!^4, {n, 0, 4}, {m, 0, 4*n}] // Flatten (* Jean-François Alcover, Dec 17 2012, translated from Maple *)
Formula
G.f.: sum(coeff(R(x, n, k), x, j)*(t-1)^j*(n*k-j)!, j=0..n*k) where n is the number of kinds of cards (4 in this case), k is the number of cards of each kind and R(x, n, k) is the rook polynomial given by R(x, n, k)=(k!^2*sum(x^j/((k-j)!^2*j!))^n (see Stanley or Riordan). coeff(R(x, n, k), x, j) indicates the coefficient for x^j of the rook polynomial.
Comments