A059119 Triangle a(n,m)=number of m-element antichains on a labeled n-set; number of monotone n-variable Boolean functions with m mincuts (lower units), m=0..binomial(n,floor(n,2)).
1, 1, 1, 2, 1, 4, 1, 1, 8, 9, 2, 1, 16, 55, 64, 25, 6, 1, 1, 32, 285, 1090, 2020, 2146, 1380, 490, 115, 20, 2, 1, 64, 1351, 14000, 82115, 304752, 759457, 1308270, 1613250, 1484230, 1067771, 635044, 326990, 147440, 57675, 19238, 5325, 1170, 190, 20, 1, 1
Offset: 0
Examples
[1, 1], [1, 2], [1, 4, 1], [1, 8, 9, 2], [1, 16, 55, 64, 25, 6, 1], [1, 32, 285, 1090, 2020, 2146, 1380, 490, 115, 20, 2], ...
References
- V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.
Links
- Suresh Govindarajan and Deepak Aditya, Table of n, a(n) for n = 0..94
- K. S. Brown, Dedekind's Problem
- V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6).
Comments