A059133 A hierarchical sequence (S(W2{2}c) - see A059126).
4, 18, 52, 126, 280, 594, 1228, 2502, 5056, 10170, 20404, 40878, 81832, 163746, 327580, 655254, 1310608, 2621322, 5242756, 10485630, 20971384, 41942898, 83885932, 167772006, 335544160, 671088474, 1342177108, 2684354382, 5368708936, 10737418050, 21474836284, 42949672758, 85899345712
Offset: 0
Links
- J. Wallgren, Hierarchical sequences
- Charlie Neder, Python program for computing A059133 and other S() sequences
- Index entries for linear recurrences with constant coefficients, signature (4, -5, 2).
Formula
Conjectures from Colin Barker, Oct 07 2015: (Start)
a(n) = 4*(-4+5*2^n)-6*n.
a(n) = 4*a(n-1)-5*a(n-2)+2*a(n-3) for n>2.
G.f.: -2*(x+2) / ((x-1)^2*(2*x-1)).
(End)
From Charlie Neder, Sep 15 2018: (Start)
a(1) is the sum of the first phrase, (1,2,1).
W2{2}c can be generated by starting with (1,2,1) as W(1) and repeatedly applying W(n) = W(n-1) + (2n-1,2n,2n-1) + W(n-1), which implies a(n) = 2*a(n-1) + 6n - 2, from which the formulas follow. (End)
a(n) = 2*A213387(n+2). - R. J. Mathar, Apr 13 2019
Extensions
More terms via the rational g.f. - R. J. Mathar, Apr 13 2019