A164098 Numbers of the form m * (k_1^2 + k_2^2 + ... + k_m^2).
1, 4, 9, 10, 16, 18, 20, 25, 26, 27, 28, 33, 34, 36, 40, 42, 48, 49, 50, 51, 52, 54, 55, 57, 58, 60, 63, 64, 65, 66, 68, 70, 72, 74, 76, 78, 80, 81, 82, 84, 85, 87, 88, 90, 91, 92, 95, 99, 100, 102, 104, 105, 106, 108, 110, 112, 114, 115, 116, 120, 121, 122, 123, 124, 125
Offset: 1
Keywords
Examples
34 = 2*(4^2 + 1^2), 42 = 3*(3^2 + 2^2 + 1^2), thus 34 and 42 are in the sequence.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
g:= proc(y,m) # can we write y as sum of m positive squares? option remember; local x; if y < m then return false fi; if m = 1 then return issqr(y) fi; if issqr(y-m+1) then return true fi; for x from 1 while x^2 + m-1 < y do if procname(y-x^2,m-1) then return true fi od; false end proc: filter:= proc(n) ormap(t -> g(n/t, t), numtheory:-divisors(n)) end proc: select(filter, [$1..1000]); # Robert Israel, Jan 26 2025
-
PARI
issumsqs(n,k) = if(n<=0||k<=0,return(k==0&&n==0)); forstep(j=sqrtint(n),max(sqrtint(n\k),1),-1,if(issumsqs(n-j^2,k-1),return(1)));0 isa(n)=local(ds);ds=divisors(n);for(k=1,(#ds+1)\2,if(issumsqs(n\ds[k],ds[k]),return(1)));0 for(n=1,200,if(isa(n),print1(n","))) \\ Franklin T. Adams-Watters, Aug 29 2009
Extensions
More terms from Franklin T. Adams-Watters, Aug 29 2009
Comments