cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Jonas Wallgren

Jonas Wallgren's wiki page.

Jonas Wallgren has authored 113 sequences. Here are the ten most recent ones:

A164098 Numbers of the form m * (k_1^2 + k_2^2 + ... + k_m^2).

Original entry on oeis.org

1, 4, 9, 10, 16, 18, 20, 25, 26, 27, 28, 33, 34, 36, 40, 42, 48, 49, 50, 51, 52, 54, 55, 57, 58, 60, 63, 64, 65, 66, 68, 70, 72, 74, 76, 78, 80, 81, 82, 84, 85, 87, 88, 90, 91, 92, 95, 99, 100, 102, 104, 105, 106, 108, 110, 112, 114, 115, 116, 120, 121, 122, 123, 124, 125
Offset: 1

Author

Jonas Wallgren, Aug 10 2009, Aug 17 2009

Keywords

Comments

From Franklin T. Adams-Watters, Aug 29 2009: (Start)
The k_i must all be positive integers.
Note that every integer > 33 is the sum of 5 positive squares, and for n > 5, every integer > n+13 is the sum of n positive squares. (End)
The complement of this sequence includes: A000040, A037074, A143206, 2 * A002145, and 3 * A094712. - Robert Israel, Jan 27 2025

Examples

			34 = 2*(4^2 + 1^2), 42 = 3*(3^2 + 2^2 + 1^2), thus 34 and 42 are in the sequence.
		

Programs

  • Maple
    g:= proc(y,m)
      # can we write y as sum of m positive squares?
       option remember;
       local x;
       if y < m then return false fi;
       if m = 1 then return issqr(y) fi;
       if issqr(y-m+1) then return true fi;
       for x from 1 while x^2 + m-1 < y do
         if procname(y-x^2,m-1) then return true fi
       od;
       false
    end proc:
    filter:= proc(n)
      ormap(t -> g(n/t, t), numtheory:-divisors(n))
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Jan 26 2025
  • PARI
    issumsqs(n,k) = if(n<=0||k<=0,return(k==0&&n==0)); forstep(j=sqrtint(n),max(sqrtint(n\k),1),-1,if(issumsqs(n-j^2,k-1),return(1)));0
    isa(n)=local(ds);ds=divisors(n);for(k=1,(#ds+1)\2,if(issumsqs(n\ds[k],ds[k]),return(1)));0
    for(n=1,200,if(isa(n),print1(n","))) \\ Franklin T. Adams-Watters, Aug 29 2009

Extensions

More terms from Franklin T. Adams-Watters, Aug 29 2009

A138808 Number of integer pairs (x,y), x > 0, y > 0, such that x <= p, y <= q for any factorization n = p*q.

Original entry on oeis.org

1, 3, 5, 8, 9, 14, 13, 20, 21, 26, 21, 35, 25, 38, 41, 48, 33, 57, 37, 64, 61, 62, 45, 84, 65, 74, 81, 96, 57, 109, 61, 112, 101, 98, 101, 138, 73, 110, 121, 151, 81, 160, 85, 160, 161, 134, 93, 196, 133, 185, 161, 192, 105, 216, 173, 223, 181, 170, 117, 258
Offset: 1

Author

Jonas Wallgren, May 16 2008

Keywords

Comments

Conjecture: the row sums of the plane partitions A010766 are upper bounds. - R. J. Mathar, Aug 06 2008
a(n) is divisible by n iff n=1 or n belongs to A227993. - Rémy Sigrist, Mar 06 2017
a(n) >= 2*n - 1, with equality iff n is not composite. - Rémy Sigrist, Mar 12 2017

Examples

			a(8) = these 20 marked *'s:
-|12345678
-+--------
1|********
2|****
3|**
4|**
5|*
6|*
7|*
8|*
		

Crossrefs

Cf. A227993.

Programs

  • PARI
    a(n) = my(ar=0, pw=0); fordiv(n, w, ar=ar+(w-pw)*n/w; pw=w); return (ar) \\ Paul Tek, Mar 21 2015

Formula

a(n) = n*(m - Sum_{k=1..m-1} d(k)/d(k+1)), where d(1) < d(2) < ... < d(m) denote the divisors of n. - Rémy Sigrist, Mar 06 2017

Extensions

More terms from Paul Tek, Mar 21 2015
Typo in name corrected by Rémy Sigrist, Mar 05 2017

A136436 Concatenation of subsequences: for each i the sequence of integers such that (1) they can be grouped into terms having the sums 1,2,3,...,i; (2) they can be grouped into terms having the sums i,...,3,2,1; (3) they are as large as possible.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 3, 1, 2, 2, 1, 1, 2, 3, 4, 1, 4, 3, 2, 1, 1, 2, 3, 1, 3, 3, 2, 3, 3, 1, 3, 2, 1, 1, 2, 3, 2, 2, 5, 6, 5, 2, 2, 3, 2, 1, 1, 2, 3, 3, 1, 5, 2, 4, 3, 4, 2, 5, 1, 3, 3, 2, 1, 1, 2, 3, 4, 5, 4, 2, 6, 1, 6, 2, 4, 5, 4, 3, 2, 1, 1, 2, 3, 4, 1, 4, 6, 7, 2, 6, 2, 7
Offset: 1

Author

Jonas Wallgren, Apr 02 2008

Keywords

Examples

			------------------------------------
....|1|2|.3.|..4..|
i=4: 1 2 1 2 1 2 1 is a subsequence
....|..4..|.3.|2|1|
------------------------------------
....|1|2|3|4|.5.|..6..|
i=6: 1 2 3 4 1 4 3 2 1 is a subsequence
....|..6..|.5.|4|3|2|1|
------------------------------------
		

A131523 Composite numbers, not ending with 0, sharing a 3-digit sequence with some of its prime factors.

Original entry on oeis.org

2498, 8571, 9995, 9998, 11241, 11371, 11379, 11398, 11669, 11994, 12353, 14285, 14997, 14998, 15009, 17122, 19146, 19996, 21058, 21079, 21131, 21372, 22122, 22413, 22564, 22856, 23317, 24006, 24293, 24982, 24994, 24995, 25006, 26672
Offset: 1

Author

Jonas Wallgren, Aug 24 2007

Keywords

Examples

			62564=2*2*15641. Both 62564 and 15641 contain 564. Thus 62564 belongs to this sequence.
		

A128310 List of maximal breaks in generalized snooker.

Original entry on oeis.org

5, 9, 11, 14, 17, 20, 24, 27, 29, 32, 35, 39, 41, 44, 45, 47, 50, 51, 54, 59, 62, 65, 74, 75, 77, 84, 86, 87, 89, 90, 101, 104, 107, 110, 114, 116, 117, 119, 120, 125, 132, 135, 137, 140, 144, 147, 149, 152, 155, 164, 167, 170, 174, 182, 185, 186, 189, 194, 195, 200
Offset: 1

Author

Jonas Wallgren, May 04 2007

Keywords

Comments

Given A000217(R) red balls and C colored balls. For every red ball 1 point for it and C+1 points for the highest colored ball, followed by 2+3+4+... points for all colored balls. This sequence contains all numbers on the form A000217(R)*(C+2)+A000217(C+1)-1, R>0, C>0 (sorted, duplicates removed).

Examples

			Let R=2 (1 point each) and C=3 (2, 3 and 4 (call that one black) points). The sequence red-black-red-black-red-black-2-3-black gives 24 points. Thus 24 is an element in this sequence.
		

A129392 Triangle read by rows: T(r,c)=T(r,c-1)+T(r,c+1)+T(r-1,c-1).

Original entry on oeis.org

1, 1, 3, 1, 1, -5, -7, -5, 1, 1, 7, 5, 3, 5, 7, 1, 1, 3, 1, -9, -15, -9, 1, 3, 1, 1, -33, -35, -5, 29, 43, 29, -5, -35, -33, 1, 1, 91, 89, 31, -23, -49, -55, -49, -23, 31, 89, 91, 1, 1, -137, -139, -93, -43, 19, 85, 115, 85, 19, -43, -93, -139, -137, 1, 1, 51, 49, 135, 225, 183, 1, -201, -287, -201, 1, 183, 225, 135, 49, 51, 1, 1, 399
Offset: 0

Author

Jonas Wallgren, Apr 13 2007

Keywords

Comments

All edge elements are 1 and the triangle is symmetric about the central line. For all elements x inside the triangle
..a..
.bxc.
we have x=a+b+c. The triangle is symmetric. The top of the triangle thus is
........1
.....1..3..1
..1.-5.-7.-5..1
1..7..5..3..5..7..1

Crossrefs

Extensions

More terms from R. J. Mathar, Jan 17 2008

A129394 Triangle read by rows: T(r,c)=T(r,c-1)+T(r,c+1)+T(r-1,c-1).

Original entry on oeis.org

0, 1, 2, 1, 2, -5, -8, -5, 2, 3, 9, 4, 0, 4, 9, 3, 4, 19, 12, -16, -32, -16, 12, 19, 4, 5, -107, -116, -28, 76, 120, 76, -28, -116, -107, 5, 6, 287, 276, 96, -64, -132, -144, -132, -64, 96, 276, 287, 6, 7, -367, -380, -300, -196, 8, 268, 392, 268, 8, -196, -300, -380, -367, 7, 8, -245, -260, 352, 992, 940, 144, -804, -1216
Offset: 0

Author

Jonas Wallgren, Apr 13 2007

Keywords

Comments

Like A129392, except edge elements=0,1,2,3,4,5,...

Crossrefs

Extensions

Corrected and extended by R. J. Mathar, Jan 17 2008

A129396 Triangle read by rows: T(r,c)=T(r,c-1)+T(r,c+1)+T(r-1,c-1).

Original entry on oeis.org

1, 2, 5, 2, 3, -10, -15, -10, 3, 4, 16, 9, 3, 9, 16, 4, 5, 22, 13, -25, -47, -25, 13, 22, 5, 6, -140, -151, -33, 105, 163, 105, -33, -151, -140, 6, 7, 378, 365, 127, -87, -181, -199, -181, -87, 127, 365, 378, 7, 8, -504, -519, -393, -239, 27, 353, 507, 353, 27, -239, -393, -519, -504, 8, 9, -194, -211, 487, 1217, 1123, 145
Offset: 0

Author

Jonas Wallgren, Apr 13 2007

Keywords

Comments

Like A129392, except edge elements=1,2,3,4,5...

Crossrefs

Extensions

More terms from R. J. Mathar, Jan 17 2008

A129399 Level sums of A129398.

Original entry on oeis.org

1, 9, -11, 33
Offset: 0

Author

Jonas Wallgren, Apr 13 2007

Keywords

Examples

			a(2)=-11 because it is the sum of all elements for h=2 in A129398:
.....1
..1.-3..1
1.-3.-7.-3..1
..1..3..1
.....1
		

Crossrefs

Cf. A129398.

A129398 Pyramid P(h,x,y)=P(h,x,y-1)+P(h,x,y+1)+P(h,x-1,y)+P(h,x+1,y)+P(h-1,x,y), read level by level, x by x.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 1, -3, 1, 1, -3, -7, -3, 1, 1, -3, 1, 1, 1, 1, 4, 1, 1, 3, 0, 3, 1, 1, 4, 0, -7, 0, 4, 1, 1, 3, 0, 3, 1, 1, 4, 1, 1
Offset: 0

Author

Jonas Wallgren, Apr 13 2007

Keywords

Comments

All face elements=1. For an element x on a level inside the pyramid
..b
.cxd
..e
with a above x, x=a+b+c+d+e. Every level of the pyramid is symmetric. Thus the top (h=0) of the pyramid is 1. The level h=1 is
..1
.1.5.1
..1
The level h=2 is
.....1
..1.-3..1
1.-3.-7.-3..1
..1.-3..1
.....1
The level h=3 is
........1
.....1..4..1
..1..3..0..3..1
1..4..0.-7..0..4..1
..1..3..0..3..1
.....1..4..1
........1

Crossrefs

This is a three-dimensional analog of A129392.