A059168 Primes in which digits alternately rise and fall (or vice versa); sometimes called undulating primes.
2, 3, 5, 7, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 131, 151, 163, 173, 181, 191, 193, 197, 241, 251, 263, 271, 281, 283, 293, 307, 313, 317, 353, 373, 383, 397, 401, 409, 419, 439, 461, 463, 487, 491
Offset: 1
References
- C. A. Pickover, "Wonders of Numbers", Oxford New York 2001, Chapter 52, pp. 123-124, 316-317.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- C. A. Pickover, "Wonders of Numbers, Adventures in Mathematics, Mind and Meaning," Zentralblatt review
Programs
-
Maple
extend:= proc(n) local L,j; L:= convert(n,base,10); if (L[-1] < L[-2]) xor (nops(L)::odd) then seq(10*n+j,j=0..L[1]-1) else seq(10*n+j,j=L[1]+1..9) fi end proc: und[2]:= [seq(seq(10*i+j,j=subs(i=NULL,[$0..9])),i=1..9)]: for i from 3 to 4 do und[i]:= map(extend,und[i-1]) od: select(isprime, [2,3,5,7,seq(op(und[i],i=2..4)]); # Robert Israel, Nov 15 2018
-
Mathematica
d[n_]:=Differences[IntegerDigits[n]]; mQ[n_]:=MemberQ[d[n],0]==False; a[n_]:=DeleteDuplicates[Sign[Take[d[n],{1,-1,2}]]]; b[n_]:=DeleteDuplicates[Sign[Take[d[n],{2,-1,2}]]]; t={}; Do[p=Prime[n]; If[mQ[p],If[Length[IntegerDigits[p]]<=2,AppendTo[t,p],If[Length[a[p]]==Length[b[p]]==1 && a[p][[1]]!=b[p][[1]],AppendTo[t,p]]]],{n,95}]; t (* Jayanta Basu, May 08 2013 *) Table[Which[p<10,p,p<100&&Differences[IntegerDigits[p]]!={0},p,p>100&&Union[Total/@ Partition[Sign[Differences[IntegerDigits[p]]],2,1]]=={0},p,True,Nothing],{p,Prime[ Range[ 150]]}] (* Harvey P. Dale, Aug 07 2023 *)
-
Python
from sympy import isprime def f(w,dir): if dir == 1: for s in w: for t in range(int(s[-1])+1,10): yield s+str(t) else: for s in w: for t in range(0,int(s[-1])): yield s+str(t) A059168_list = [] for l in range(5): for d in '123456789': x = d for i in range(1,l+1): x = f(x,(-1)**i) A059168_list.extend([int(p) for p in x if isprime(int(p))]) if l > 0: y = d for i in range(1,l+1): y = f(y,(-1)**(i+1)) A059168_list.extend([int(p) for p in y if isprime(int(p))]) # Chai Wah Wu, Apr 25 2021
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Feb 15 2001
Offset changed by Robert Israel, Nov 15 2018