A059259 Triangle read by rows giving coefficient T(i,j) of x^i y^j in 1/(1-x-x*y-y^2) = 1/((1+y)(1-x-y)) for (i,j) = (0,0), (1,0), (0,1), (2,0), (1,1), (0,2), ...
1, 1, 0, 1, 1, 1, 1, 2, 2, 0, 1, 3, 4, 2, 1, 1, 4, 7, 6, 3, 0, 1, 5, 11, 13, 9, 3, 1, 1, 6, 16, 24, 22, 12, 4, 0, 1, 7, 22, 40, 46, 34, 16, 4, 1, 1, 8, 29, 62, 86, 80, 50, 20, 5, 0, 1, 9, 37, 91, 148, 166, 130, 70, 25, 5, 1, 1, 10, 46, 128, 239, 314, 296, 200
Offset: 0
Examples
Triangle begins: 1; 1, 0; 1, 1, 1; 1, 2, 2, 0; 1, 3, 4, 2, 1; 1, 4, 7, 6, 3, 0; 1, 5, 11, 13, 9, 3, 1; 1, 6, 16, 24, 22, 12, 4, 0; 1, 7, 22, 40, 46, 34, 16, 4, 1; 1, 8, 29, 62, 86, 80, 50, 20, 5, 0; 1, 9, 37, 91, 148, 166, 130, 70, 25, 5, 1; 1, 10, 46, 128, 239, 314, 296, 200, 95, 30, 6, 0; ...
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Joseph Briggs, Alex Parker, Coy Schwieder, and Chris Wells, Frogs, hats and common subsequences, arXiv:2404.07285 [math.CO], 2024. See p. 28.
- Kenneth Edwards and Michael A. Allen, New Combinatorial Interpretations of the Fibonacci Numbers Squared, Golden Rectangle Numbers, and Jacobsthal Numbers Using Two Types of Tile, arXiv:2009.04649 [math.CO], 2020.
Crossrefs
Programs
-
Maple
read transforms; 1/(1-x-x*y-y^2); SERIES2(%,x,y,12); SERIES2TOLIST(%,x,y,12);
-
Mathematica
T[n_, 0]:= 1; T[n_, n_]:= (1+(-1)^n)/2; T[n_, k_]:= T[n, k] = T[n-1, k] + T[n-1, k-1]; Table[T[n, k], {n, 0, 10} , {k, 0, n}]//Flatten (* G. C. Greubel, Jan 03 2017 *)
-
PARI
{T(n,k) = if(k==0, 1, if(k==n, (1+(-1)^n)/2, T(n-1,k) +T(n-1,k-1)) )}; for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Apr 29 2019
-
Sage
def A059259_row(n): @cached_function def prec(n, k): if k==n: return (-1)^n if k==0: return 0 return prec(n-1,k-1)-sum(prec(n,k+i-1) for i in (2..n-k+1)) return [(-1)^(n-k+1)*prec(n+1, k) for k in (1..n)] for n in (1..12): print(A059259_row(n)) # Peter Luschny, Mar 16 2016
Formula
G.f.: 1/(1 - x - x*y - y^2).
As a square array read by antidiagonals, this is T(n, k) = Sum_{i=0..n} (-1)^(n-i)*C(i+k, k). - Paul Barry, Jul 01 2003
T(2*n,n) = A026641(n). - Philippe Deléham, Mar 08 2007
T(n,k) = T(n-1,k) + T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = T(2,1) = T(2,2)=1, T(1,1)=0, T(n,k)=0 if k < 0 or if k > n. - Philippe Deléham, Nov 24 2013
T(n,0) = 1, T(n,n) = (1+(-1)^n)/2, and T(n,k) = T(n-1,k) + T(n-1,k-1) for 0 < k < n. - Mathew Englander, May 24 2014
From Michael A. Allen, Jun 25 2020: (Start)
T(n,k) + T(n-1,k-1) = binomial(n,k) if n >= k > 0.
T(2*n-1,2*n-2) = T(2*n,2*n-1) = n, T(2*n,2*n-2) = n^2, T(2*n+1,2*n-1) = n*(n+1) for n > 0.
T(n,2) = binomial(n-2,2) + n - 1 for n > 1 and T(n,3) = binomial(n-3,3) + 2*binomial(n-2,2) for n > 2.
T(2*n-k,k) = A123521(n,k). (End)
Comments