A059261 Hilbert's Hamiltonian walk on N X N projected onto the first diagonal: M(3) (sum of the sequences A059252 and A059253).
0, 1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 4, 3, 2, 3, 4, 5, 6, 5, 6, 7, 8, 7, 8, 9, 10, 9, 8, 7, 6, 7, 8, 9, 10, 9, 10, 11, 12, 11, 12, 13, 14, 13, 12, 11, 10, 11, 10, 9, 8, 9, 8, 7, 6, 7, 6, 5, 4, 5, 6, 7, 8, 7, 8, 9, 10, 9, 10, 11, 12, 11, 12, 13, 14, 13, 12, 11, 10, 11, 12, 13, 14, 13, 14, 15
Offset: 0
Keywords
Links
- A. Karttunen, Table of n, a(n) for n = 0..65535
Crossrefs
Formula
Initially, M(0)=0; recursion: M(n+1)=M(n).f(M(n), n).f(M(n), n+1).d(M(n), n); -f(m, n) is the alphabetic morphism i := i+2^n; [example: f(0 1 2 1 2 3 4 3 4 5 6 5 4 3 2 3, 2)=4 5 6 5 6 7 8 7 8 9 10 9 8 7 6 7 ] -d(m, n) is the complementation to 2^(n-1)*3-2, alphabetic morphism; [example: d(0 1 2 1 2 3 4 3 4 5 6 5 4 3 2 3, 3)=10 9 8 9 8 7 6 7 6 5 4 5 6 7 8 7] Here is M(3). [M(1)=0.1.2.1, M(2)=0 1 2 1.2 3 4 3.4 5 6 5.4 3 2 3]
Extensions
Extended by Antti Karttunen, Aug 01 2009
Comments