A059269 Numbers m for which the number of divisors, tau(m), is divisible by 3.
4, 9, 12, 18, 20, 25, 28, 32, 36, 44, 45, 49, 50, 52, 60, 63, 68, 72, 75, 76, 84, 90, 92, 96, 98, 99, 100, 108, 116, 117, 121, 124, 126, 132, 140, 144, 147, 148, 150, 153, 156, 160, 164, 169, 171, 172, 175, 180, 188, 196, 198, 200, 204, 207, 212, 220, 224, 225, 228
Offset: 1
Examples
a(7) = 28 is a term because the number of divisors of 28, d(28) = 6, is divisible by 3.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Eckford Cohen, Arithmetical Notes, XIII. A Sequal to Note IV, Elemente der Mathematik, Vol. 18 (1963), pp. 8-11.
- S. S. Pillai, On a congruence property of the divisor function, J. Indian Math. Soc. (N. S.), Vol. 6, (1942), pp. 118-119.
- L. G. Sathe, On a congruence property of the divisor function, American Journal of Mathematics, Vol. 67, No. 3 (1945), pp. 397-406.
Crossrefs
Programs
-
Maple
with(numtheory): for n from 1 to 1000 do if tau(n) mod 3 = 0 then printf(`%d,`,n) fi: od:
-
Mathematica
Select[Range[230], Divisible[DivisorSigma[0, #], 3] &] (* Amiram Eldar, Jul 26 2020 *)
-
PARI
is(n)=vecmax(factor(n)[,2]%3)==2 \\ Charles R Greathouse IV, Apr 10 2012
-
PARI
is(n)=numdiv(n)%3==0 \\ Charles R Greathouse IV, Sep 18 2015
Formula
Conjecture: a(n) ~ k*n where k = 1/(1 - Product(1 - (p-1)/(p^(3*i)))) = 3.743455... where p ranges over the primes and i ranges over the positive integers. - Charles R Greathouse IV, Apr 13 2012
The asymptotic density of this sequence is 1 - zeta(3)/zeta(2) = 1 - 6*zeta(3)/Pi^2 = 0.2692370305... (Sathe, 1945). Therefore, the above conjecture, a(n) ~ k*n, is true, but k = 1/(1-6*zeta(3)/Pi^2) = 3.7141993349... - Amiram Eldar, Jul 26 2020
Extensions
More terms from James Sellers, Jan 24 2001
Comments