A059278 G.f. is G(x*(1-x)/(1-2*x)) where G(x) is g.f. for Catalan numbers A000108.
1, 1, 3, 11, 43, 175, 735, 3167, 13935, 62383, 283311, 1302271, 6047679, 28332991, 133752191, 635618431, 3038326911, 14599154431, 70474889471, 341624867071, 1662254107391, 8115717976831, 39747223425791, 195219110182911, 961330824858623
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..1000
- Ricardo Gómez Aíza, Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis, arXiv:2402.16111 [math.CO], 2024. See p. 18.
Crossrefs
Cf. A000108.
Programs
-
Maple
f:= gfun:-rectoproc({(4+8*n)*a(n)+(-36-24*n)*a(1+n)+(60+24*n)*a(n+2)+(-33-9*n)*a(n+3)+(5+n)*a(n+4), a(0) = 1, a(1) = 1, a(2) = 3, a(3) = 11},a(n),remember): map(f, [$0..30]); # Robert Israel, Mar 04 2016
-
Mathematica
CoefficientList[Series[(2*x-1+Sqrt[(1-2*x)*(1-6*x+4*x^2)])/(2*x*(x-1)), {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 19 2014 *) Table[Sum[CatalanNumber[k] Sum[2^i Binomial[k, n - k - i] Binomial[k + i - 1, i] (-1)^(n - k - i), {i, 0, n - k}], {k, 0, n}], {n, 0, 24}] (* Michael De Vlieger, Mar 04 2016 *)
-
Maxima
a(n):=sum((binomial(2*k,k)*sum(2^i*binomial(k,n-k-i)*binomial(k+i-1,i)*(-1)^(n-k-i),i,0,n-k))/(k+1),k,0,n); /* Vladimir Kruchinin, Mar 04 2016 */
-
PARI
a(n)=polcoeff((2*x-1 +sqrt((1-2*x)*(1-6*x+4*x^2)+x^2*O(x^n))) /(2*x^2-2*x), n);
-
PARI
x='x+O('x^100); Vec((2*x-1+sqrt((1-2*x)*(1-6*x+4*x^2)))/(2*x*(x-1))) \\ Altug Alkan, Mar 05 2016
Formula
G.f.: (2*x-1+sqrt((1-2*x)*(1-6*x+4*x^2)))/(2*x*(x-1)).
G.f.: W(0), where W(k) = 1 + (4*k+1)*x*(1-x)/( (k+1)*(1-2*x) - 2*x*(1-x)*(1-2*x)*(k+1)*(4*k+3)/(2*x*(1-x)*(4*k+3) + (2*k+3)*(1-2*x)/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 28 2013
Recurrence: (n+1)*a(n) = 3*(3*n-1)*a(n-1) - 12*(2*n-3)*a(n-2) + 12*(2*n-5)*a(n-3) - 4*(2*n-7)*a(n-4). - Vaclav Kotesovec, Jun 19 2014
a(n) ~ sqrt(10-2*sqrt(5)) * (3+sqrt(5))^n / (2*sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jun 19 2014. Equivalently, a(n) ~ 5^(1/4) * 2^n * phi^(2*n - 1/2) / (sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 06 2021
a(n) = Sum_{k=0..n} C(k)*Sum_{i=0..n-k} 2^i*binomial(k,n-k-i)*binomial(k+i-1,i)*(-1)^(n-k-i), where C(k) is the k-th Catalan number. - Vladimir Kruchinin, Mar 04 2016