cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059278 G.f. is G(x*(1-x)/(1-2*x)) where G(x) is g.f. for Catalan numbers A000108.

Original entry on oeis.org

1, 1, 3, 11, 43, 175, 735, 3167, 13935, 62383, 283311, 1302271, 6047679, 28332991, 133752191, 635618431, 3038326911, 14599154431, 70474889471, 341624867071, 1662254107391, 8115717976831, 39747223425791, 195219110182911, 961330824858623
Offset: 0

Views

Author

N. J. A. Sloane, Jan 24 2001

Keywords

Crossrefs

Cf. A000108.

Programs

  • Maple
    f:= gfun:-rectoproc({(4+8*n)*a(n)+(-36-24*n)*a(1+n)+(60+24*n)*a(n+2)+(-33-9*n)*a(n+3)+(5+n)*a(n+4), a(0) = 1, a(1) = 1, a(2) = 3, a(3) = 11},a(n),remember):
    map(f, [$0..30]); # Robert Israel, Mar 04 2016
  • Mathematica
    CoefficientList[Series[(2*x-1+Sqrt[(1-2*x)*(1-6*x+4*x^2)])/(2*x*(x-1)), {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 19 2014 *)
    Table[Sum[CatalanNumber[k] Sum[2^i Binomial[k, n - k - i] Binomial[k + i - 1, i] (-1)^(n - k - i), {i, 0, n - k}], {k, 0, n}], {n, 0, 24}] (* Michael De Vlieger, Mar 04 2016 *)
  • Maxima
    a(n):=sum((binomial(2*k,k)*sum(2^i*binomial(k,n-k-i)*binomial(k+i-1,i)*(-1)^(n-k-i),i,0,n-k))/(k+1),k,0,n); /* Vladimir Kruchinin, Mar 04 2016 */
  • PARI
    a(n)=polcoeff((2*x-1 +sqrt((1-2*x)*(1-6*x+4*x^2)+x^2*O(x^n))) /(2*x^2-2*x), n);
    
  • PARI
    x='x+O('x^100); Vec((2*x-1+sqrt((1-2*x)*(1-6*x+4*x^2)))/(2*x*(x-1))) \\ Altug Alkan, Mar 05 2016
    

Formula

G.f.: (2*x-1+sqrt((1-2*x)*(1-6*x+4*x^2)))/(2*x*(x-1)).
G.f.: W(0), where W(k) = 1 + (4*k+1)*x*(1-x)/( (k+1)*(1-2*x) - 2*x*(1-x)*(1-2*x)*(k+1)*(4*k+3)/(2*x*(1-x)*(4*k+3) + (2*k+3)*(1-2*x)/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 28 2013
Recurrence: (n+1)*a(n) = 3*(3*n-1)*a(n-1) - 12*(2*n-3)*a(n-2) + 12*(2*n-5)*a(n-3) - 4*(2*n-7)*a(n-4). - Vaclav Kotesovec, Jun 19 2014
a(n) ~ sqrt(10-2*sqrt(5)) * (3+sqrt(5))^n / (2*sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jun 19 2014. Equivalently, a(n) ~ 5^(1/4) * 2^n * phi^(2*n - 1/2) / (sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 06 2021
a(n) = Sum_{k=0..n} C(k)*Sum_{i=0..n-k} 2^i*binomial(k,n-k-i)*binomial(k+i-1,i)*(-1)^(n-k-i), where C(k) is the k-th Catalan number. - Vladimir Kruchinin, Mar 04 2016