A059283 Triangle T(n,k) (0<= k <=n) read by rows. Left edge is 1, 0, 0, ... Otherwise each entry is sum of entry to left, entries immediately above it to left and right and entry directly above it 2 rows back.
1, 0, 1, 0, 2, 3, 0, 2, 8, 11, 0, 2, 14, 36, 47, 0, 2, 20, 78, 172, 219, 0, 2, 26, 138, 424, 862, 1081, 0, 2, 32, 216, 856, 2314, 4476, 5557, 0, 2, 38, 312, 1522, 5116, 12768, 23882, 29439, 0, 2, 44, 426, 2476, 9970, 30168, 71294, 130172, 159611, 0, 2, 50, 558
Offset: 0
Examples
1; 0,1; 0,2,3; 0,2,8,11; 0,2,14,36,47; ... [36 = 14 + 8 + 11 + 3 for example].
Links
- Reinhard Zumkeller, Rows n = 0..120 of triangle, flattened
Programs
-
Haskell
a059283 n k = a059283_tabl !! n !! k a059283_row n = a059283_tabl !! n a059283_tabl = [1] : [0,1] : f [1] [0,1] where f us vs = ws : f vs ws where ws = scanl1 (+) $ zipWith (+) ([0]++us++[0]) $ zipWith (+) ([0]++vs) (vs++[0]) -- Reinhard Zumkeller, Apr 17 2013
-
Mathematica
t[0, 0] = 1; t[, 0] = 0; t[n, k_] /; 0 <= k <= n := t[n, k] = t[n, k-1] + t[n-1, k-1] + t[n-1, k] + t[n-2, k-1]; t[, ] = 0; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 11 2013 *)
Formula
T(0, 0)=1; T(n, 0)=0, n>0; T(n, k)=T(n, k-1)+T(n-1, k-1)+T(n-1, k)+T(n-2, k-1), n, k>0
G.f. for T(n, k): ((1+2*w+w^2)*z^2+(-1-2*w-w^2)*z-w*(-3*w^2-6*w+1)^(1/2)+2*w)/(1+w)^2/((1+w)*z^2+(w-1)*z+w) (expand first as series in z, then in w).
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Jan 25 2001