cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059379 Array of values of Jordan function J_k(n) read by antidiagonals (version 1).

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 2, 8, 7, 1, 4, 12, 26, 15, 1, 2, 24, 56, 80, 31, 1, 6, 24, 124, 240, 242, 63, 1, 4, 48, 182, 624, 992, 728, 127, 1, 6, 48, 342, 1200, 3124, 4032, 2186, 255, 1, 4, 72, 448, 2400, 7502, 15624, 16256, 6560, 511, 1, 10, 72, 702, 3840
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2001

Keywords

Examples

			Array begins:
  1,  1,  2,   2,   4,    2,    6,    4,   6,  4, 10, 4, ...
  1,  3,  8,  12,  24,   24,   48,   48,  72, 72, ...
  1,  7, 26,  56, 124,  182,  342,  448, 702, ...
  1, 15, 80, 240, 624, 1200, 2400, 3840, ...
		

References

  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.
  • R. Sivaramakrishnan, "The many facets of Euler's totient. II. Generalizations and analogues", Nieuw Arch. Wisk. (4) 8 (1990), no. 2, 169-187.

Crossrefs

See A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A059376 (J_3), A059377 (J_4), A059378 (J_5). Columns give A000225, A024023, A020522, A024049, A059387, etc.
Main diagonal gives A067858.

Programs

  • Maple
    J := proc(n,k) local i,p,t1,t2; t1 := n^k; for p from 1 to n do if isprime(p) and n mod p = 0 then t1 := t1*(1-p^(-k)); fi; od; t1; end;
    #alternative
    A059379 := proc(n,k)
        add(d^k*numtheory[mobius](n/d),d=numtheory[divisors](n)) ;
    end proc:
    seq(seq(A059379(d-k,k),k=1..d-1),d=2..12) ; # R. J. Mathar, Nov 23 2018
  • Mathematica
    JordanTotient[n_,k_:1]:=DivisorSum[n,#^k*MoebiusMu[n/#]&]/;(n>0)&&IntegerQ[n];
    A004736[n_]:=Binomial[Floor[3/2+Sqrt[2*n]],2]-n+1;
    A002260[n_]:=n-Binomial[Floor[1/2+Sqrt[2*n]],2];
    A059379[n_]:=JordanTotient[A004736[n],A002260[n]]; (* Enrique Pérez Herrero, Dec 19 2010 *)
  • PARI
    jordantot(n,k)=sumdiv(n,d,d^k*moebius(n/d));
    A002260(n)=n-binomial(floor(1/2+sqrt(2*n)),2);
    A004736(n)=binomial(floor(3/2+sqrt(2*n)),2)-n+1;
    A059379(n)=jordantot(A004736(n),A002260(n)); \\ Enrique Pérez Herrero, Jan 08 2011
    
  • Python
    from functools import cache
    def MoebiusTrans(a, i):
        @cache
        def mb(n, d = 1):
              return d % n and -mb(d, n % d < 1) + mb(n, d + 1) or 1 // n
        def mob(m, n): return mb(m // n) if m % n == 0 else 0
        return sum(mob(i, d) * a(d) for d in range(1, i + 1))
    def Jrow(n, size):
        return [MoebiusTrans(lambda m: m ** n, k) for k in range(1, size)]
    for n in range(1, 8): print(Jrow(n, 13))
    # Alternatively:
    from sympy import primefactors as prime_divisors
    from fractions import Fraction as QQ
    from math import prod as product
    def J(n: int, k: int) -> int:
        t = QQ(pow(k, n), 1)
        s = product(1 - QQ(1, pow(p, n)) for p in prime_divisors(k))
        return (t * s).numerator  # the denominator is always 1
    for n in range(1, 8): print([J(n, k) for k in range(1, 13)])
    # Peter Luschny, Dec 16 2023

Formula

J_k(n) = Sum_{d|n} d^k*mu(n/d). - Benoit Cloitre and Michael Orrison (orrison(AT)math.hmc.edu), Jun 07 2002
From Amiram Eldar, Jun 07 2025: (Start)
For a given k, J_k(n) is multiplicative with J_k(p^e) = p^(k*e) - p^(k*e-k).
For a given k, Dirichlet g.f. of J_k(n): zeta(s-k)/zeta(s).
Sum_{i=1..n} J_k(i) ~ n^(k+1) / ((k+1)*zeta(k+1)).
Sum_{n>=1} 1/J_k(n) = Product_{p prime} (1 + p^k/(p^k-1)^2) for k >= 2. (End)