cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059397 Triangle formed by right-bounded rhombus rule, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 7, 6, 1, 4, 12, 18, 16, 1, 5, 18, 37, 53, 40, 1, 6, 25, 64, 120, 148, 109, 1, 7, 33, 100, 227, 369, 430, 297, 1, 8, 42, 146, 385, 760, 1146, 1244, 836, 1, 9, 52, 203, 606, 1391, 2518, 3519, 3656, 2377, 1, 10, 63, 272, 903, 2346, 4900, 8188
Offset: 0

Views

Author

N. J. A. Sloane, Jan 29 2001

Keywords

Comments

T(n,n)=A128720(n). Mirror image of A132276. - Emeric Deutsch, Sep 03 2007

Examples

			If triangle is reflected in the vertical axis it looks like this:
1
1 1
3 2 1
6 7 3 1
16 18 12 4 1
and now the rhombus rule is clearly visible (e.g. 18 = 6 + 7 + 3 + 2).
		

Crossrefs

A variation on A059317. Row sums give A059398.

Programs

  • Maple
    g:=proc(z) options operator, arrow: (1/2-(1/2)*z-(1/2)*z^2-(1/2)*sqrt((1+z-z^2)*(1-3*z-z^2)))/z^2 end proc: G:=simplify(g(t*z)/(1-z*g(t*z))): Gser:=simplify(series(G,z=0,13)): for n from 0 to 10 do P[n]:=sort(coeff(Gser,z,n)) end do: for n from 0 to 10 do seq(coeff(P[n],t,j),j=0..n) end do; # yields sequence in triangular form - Emeric Deutsch, Sep 03 2007
  • Mathematica
    max = 10; g[z_] := (1 - z - z^2 - Sqrt[(1 + z - z^2)*(1 - 3*z - z^2)])/(2 z^2); s = Series[g[t*z]/(1 - z*g[t*z]), {z, 0, max}, {t, 0, max}] // Normal; t[n_, k_] := SeriesCoefficient[s, {z, 0, n}, {t, 0, k}]; t[0, 0] = 1; Table[t[n, k], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 16 2014, after Emeric Deutsch *)

Formula

Each entry is sum of 3 entries above it in previous row and the entry directly above two rows back (provided the entries are properly aligned).
G.f.=G(t,z)=g(tz)/(1-zg(tz)), where g(z)=(1-z-z^2-sqrt((1+z-z^2)(1-3z-z^2)))/(2z^2). - Emeric Deutsch, Sep 03 2007

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jan 31 2001