A059398 Row sums of triangle in A059397.
1, 2, 6, 17, 51, 154, 473, 1464, 4568, 14332, 45187, 143024, 454217, 1446604, 4618576, 14777451, 47371177, 152110326, 489165277, 1575211177, 5078690936, 16392526502, 52963765321, 171282782902, 554393341371, 1795821017014
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Paul Barry, On Motzkin-Schröder Paths, Riordan Arrays, and Somos-4 Sequences, J. Int. Seq. (2023) Vol. 26, Art. 23.4.7.
- W. Klostermeyer et al., A Pascal rhombus, Fibonacci Quarterly, 35 (1976), 318-328.
Programs
-
Magma
Q:=Rationals(); R
:=PowerSeriesRing(Q, 40); Coefficients(R!(Sqrt((1+x-x^2)/(1-3*x-x^2))-1)/(2*x)) // G. C. Greubel, Jan 29 2018 -
Maple
g:=(1/2)*(sqrt((1+x-x^2)/(1-3*x-x^2))-1)/x: gser:=series(g,x=0,30): seq(coeff(gser,x,n),n=0..25); # Emeric Deutsch, Sep 03 2007
-
Mathematica
Table[Sum[Binomial[2k,k](-1)^(n-k+1)Sum[Binomial[i+k-1,i]Binomial[i,n-k-i+1],{i,0,n-k+1}],{k,0,n+1}]/2,{n,0,28}] (* Emanuele Munarini, May 05 2011 *) With[{nn = 50}, CoefficientList[Series[(Sqrt[(1 + x - x^2)/(1 - 3*x - x^2)] - 1)/x/2, {x, 0, nn}], x]] (* G. C. Greubel, Jan 29 2018 *)
-
Maxima
makelist(sum(binomial(2*k,k)*(-1)^(n-k+1)*sum(binomial(i+k-1,i)*binomial(i,n-k-i+1),i,0,n-k+1),k,0,n+1)/2,n,0,28); /* Emanuele Munarini, May 05 2011 */
-
PARI
x='x+O('x^30); Vec((sqrt((1+x-x^2)/(1-3*x-x^2))-1)/x/2) \\ G. C. Greubel, Jan 29 2018
Formula
G.f.: (sqrt((1+x-x^2)/(1-3*x-x^2))-1)/x/2. - Vladeta Jovovic, Jan 20 2004
a(n) = (1/2)*sum(binomial(2*k,k)*(-1)^(n-k+1)*sum(binomial(i+k-1,i)*binomial(i,n-k-i+1),i=0..n-k+1),k=0..n+1). - Emanuele Munarini, May 05 2011
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Jan 31 2001
Comments