cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A132276 Triangle read by rows: T(n,k) is the number of paths in the first quadrant from (0,0) to (n,k), consisting of steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0) (0<=k<=n).

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 6, 7, 3, 1, 16, 18, 12, 4, 1, 40, 53, 37, 18, 5, 1, 109, 148, 120, 64, 25, 6, 1, 297, 430, 369, 227, 100, 33, 7, 1, 836, 1244, 1146, 760, 385, 146, 42, 8, 1, 2377, 3656, 3519, 2518, 1391, 606, 203, 52, 9, 1, 6869, 10796, 10839, 8188, 4900, 2346, 903, 272
Offset: 0

Views

Author

Emeric Deutsch, Aug 16 2007, Sep 03 2007

Keywords

Comments

Mirror image of A059397. - Emeric Deutsch, Aug 18 2007
Row sums yield A059398.
Riordan matrix (g(x),x*g(x)), where g(x) = (1-x-x^2-sqrt(1-2*x-5*x^2+2*x^3+x^4))/(2*x^2). - Emanuele Munarini, May 05 2011

Examples

			T(3,2) = 3 because we have UUh, UhU and hUU.
Triangle begins:
    1;
    1,   1;
    3,   2,   1;
    6,   7,   3,  1;
   16,  18,  12,  4,  1;
   40,  53,  37, 18,  5, 1;
  109, 148, 120, 64, 25, 6, 1;
  ...
		

References

  • Lin Yang and S.-L. Yang, The parametric Pascal rhombus. Fib. Q., 57:4 (2019), 337-346.

Crossrefs

Cf. A059397, A128720 (the leading diagonal).
Cf. A059398.

Programs

  • Maple
    g:=((1-z-z^2-sqrt((1+z-z^2)*(1-3*z-z^2)))*1/2)/z^2: G:=simplify(g/(1-t*z*g)): Gser:=simplify(series(G,z=0,13)): for n from 0 to 10 do P[n]:=sort(coeff(Gser, z,n)) end do: for n from 0 to 10 do seq(coeff(P[n], t, j), j = 0 .. n) end do; # yields sequence in triangular form
  • Mathematica
    Flatten[Table[Sum[Binomial[2i+k,i]*(k+1)/(i+k+1)*Sum[Binomial[n-j,2i+k]*Binomial[n-k-2i-j,j],{j,0,n-k-2i}],{i,0,(n-k)/2}],{n,0,15},{k,0,n}]] (* Emanuele Munarini, May 05 2011 *)
    c[x_] := (1 - Sqrt[1 - 4*x])/(2*x); g[z_] := c[z^2/(1 - z - z^2)^2]/(1 - z - z^2); G[t_, z_] := g[z]/(1 - t*z*g[z]); CoefficientList[ CoefficientList[Series[G[t, x], {x, 0, 49}, {t, 0, 49}], x], t]//Flatten (* G. C. Greubel, Dec 02 2017 *)
  • Maxima
    create_list(sum(binomial(2*i+k,i) * (k+1)/(i+k+1) * sum(binomial(n-j,2*i+k) * binomial(n-k-2*i-j,j),j,0,n-k-2*i), i,0,(n-k)/2), n,0,15, k,0,n); /* Emanuele Munarini, May 05 2011 */
    
  • PARI
    T(n,k) = sum(i=0, (n-k)/2, (binomial(2*i+k,i)*(k+1)/(i+k+1))*sum(j=0, n-k-2*i, binomial(n-j,2*i+k)*binomial(n-k-2*i-j,j))) \\ G. C. Greubel, Nov 29 2017

Formula

T(n,0) = A128720(n).
G.f.: G(t,z) = g/(1-t*z*g), where g = 1 +z*g +z^2*g +z^2*g^2 or g = c(z^2/(1-z-z^2)^2)/(1-z-z^2), where c(z) = (1-sqrt(1-4*z))/(2*z) is the Catalan function.
T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-1,k+1) + T(n-2,k). - Emeric Deutsch, Aug 18 2007
Column k has g.f. z^k*g^(k+1), where g = 1 +z*g +z^2*g +z^2*g^2 = (1 -z-z^2 -sqrt((1+z-z^2)*(1-3*z-z^2)))/(2*z^2).
T(n,k) = Sum_{i=0..(n-k)/2} (binomial(2*i+k,i)*(k+1)/(i+k+1))*Sum_{j=0..(n-k-2*i)} binomial(n-j,2*i+k)*binomial(n-k-2*i-j,j). - Emanuele Munarini, May 05 2011 [corrected by Jason Yuen, Apr 08 2025]

A059397 Triangle formed by right-bounded rhombus rule, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 7, 6, 1, 4, 12, 18, 16, 1, 5, 18, 37, 53, 40, 1, 6, 25, 64, 120, 148, 109, 1, 7, 33, 100, 227, 369, 430, 297, 1, 8, 42, 146, 385, 760, 1146, 1244, 836, 1, 9, 52, 203, 606, 1391, 2518, 3519, 3656, 2377, 1, 10, 63, 272, 903, 2346, 4900, 8188
Offset: 0

Views

Author

N. J. A. Sloane, Jan 29 2001

Keywords

Comments

T(n,n)=A128720(n). Mirror image of A132276. - Emeric Deutsch, Sep 03 2007

Examples

			If triangle is reflected in the vertical axis it looks like this:
1
1 1
3 2 1
6 7 3 1
16 18 12 4 1
and now the rhombus rule is clearly visible (e.g. 18 = 6 + 7 + 3 + 2).
		

Crossrefs

A variation on A059317. Row sums give A059398.

Programs

  • Maple
    g:=proc(z) options operator, arrow: (1/2-(1/2)*z-(1/2)*z^2-(1/2)*sqrt((1+z-z^2)*(1-3*z-z^2)))/z^2 end proc: G:=simplify(g(t*z)/(1-z*g(t*z))): Gser:=simplify(series(G,z=0,13)): for n from 0 to 10 do P[n]:=sort(coeff(Gser,z,n)) end do: for n from 0 to 10 do seq(coeff(P[n],t,j),j=0..n) end do; # yields sequence in triangular form - Emeric Deutsch, Sep 03 2007
  • Mathematica
    max = 10; g[z_] := (1 - z - z^2 - Sqrt[(1 + z - z^2)*(1 - 3*z - z^2)])/(2 z^2); s = Series[g[t*z]/(1 - z*g[t*z]), {z, 0, max}, {t, 0, max}] // Normal; t[n_, k_] := SeriesCoefficient[s, {z, 0, n}, {t, 0, k}]; t[0, 0] = 1; Table[t[n, k], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 16 2014, after Emeric Deutsch *)

Formula

Each entry is sum of 3 entries above it in previous row and the entry directly above two rows back (provided the entries are properly aligned).
G.f.=G(t,z)=g(tz)/(1-zg(tz)), where g(z)=(1-z-z^2-sqrt((1+z-z^2)(1-3z-z^2)))/(2z^2). - Emeric Deutsch, Sep 03 2007

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jan 31 2001

A132887 Number of symmetric paths in the first quadrant, from (0,0) to (n,0), consisting of steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0).

Original entry on oeis.org

1, 1, 3, 2, 8, 6, 23, 17, 68, 51, 205, 154, 627, 473, 1937, 1464, 6032, 4568, 18900, 14332, 59519, 45187, 188211, 143024, 597241, 454217, 1900821, 1446604, 6065180, 4618576, 19396027
Offset: 0

Views

Author

Emeric Deutsch, Sep 05 2007

Keywords

Comments

a(2n+1)=A059398(n); a(2n)=A059398(n-1)+A059398(n). The number of all paths in the first quadrant, from (0,0) to (n,0), consisting of steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0) is A128720(n).

Examples

			a(4)=8 because we have hhhh, hHh, HH, hUDh, UDUD, UhhD, UHD and UUDD.
		

Crossrefs

Programs

  • Maple
    G:=(2*(1+z+z^2))/(1-3*z^2-z^4+sqrt((1+z^2-z^4)*(1-3*z^2-z^4))): Gser:=series(G,z=0,35): seq(coeff(Gser,z,n),n=0..30);

Formula

G.f.=2(1+z+z^2)/[1-3z^2-z^4+sqrt((1+z^2-z^4)(1-3z^2-z^4))].
D-finite with recurrence (n+2)*a(n) +n*a(n-1) +(-n-6)*a(n-2) -2*n*a(n-3) +7*(-n+2)*a(n-4) +5*(-n+4)*a(n-5) +3*(-n+6)*a(n-6) +2*(n-8)*a(n-7) +(3*n-26)*a(n-8) +(n-8)*a(n-9) +(n-10)*a(n-10)=0. - R. J. Mathar, Oct 08 2016
Showing 1-3 of 3 results.