A059412 Number of distinct minimal unary DFA's with exactly n states.
2, 4, 12, 30, 78, 180, 432, 978, 2220, 4926, 10908, 23790, 51750, 111564, 239604, 511758, 1089306, 2309118, 4880946, 10285146, 21619770, 45334776, 94865904, 198116082, 413013684, 859573638, 1786263822, 3706729488, 7681910826
Offset: 1
Keywords
Examples
a(1) = 2 because there are exactly two minimal unary automata with 1 state.
References
- M. Domaratzki, D. Kisman, and J. Shallit, On the number of distinct languages accepted by finite automata with n states, J. Autom. Lang. Combinat. 7 (2002) 4-18, Section 6, f_1(n).
- Jeffrey Shallit, Notes on Enumeration of Finite Automata, manuscript, Jan 30, 2001.
Links
- Cyril Nicaud, Average state complexity of operations on unary automata, Math. Foundations of Computer Science, 1999, Lect. Notes in Computer Sci. #1672, pp. 231-240.
- Lucas B. Vieira and Costantino Budroni, Temporal correlations in the simplest measurement sequences, Quantum 6 p. 623 (2022).
- Lucas Vieira Barbosa, Nonclassical Temporal Correlations Under Finite-Memory Constraints, Doctoral Thesis, Univ. Wien (Austria 2024). See p. 35.
Programs
-
Maple
A059412 := proc(n) A027375(n)+add(A027375(n-j)*2^(j-1),j=1..n-1) ; end proc: seq(A059412(n),n=1..10) ; # R. J. Mathar, May 21 2018
-
Mathematica
A027375[n_] := DivisorSum[n, MoebiusMu[n/#]*2^# &]; a[n_] := A027375[n] + Sum[A027375[n-j]*2^(j-1), {j, 1, n-1}]; Table[a[n], {n, 1, 29}] (* Jean-François Alcover, May 08 2023 *)
-
PARI
mypsi(n) = sumdiv(n, d, moebius(n/d)*2^d) /* from A027375 */ a(n) = mypsi(n) + sum(j=1, n-1, mypsi(n-j)*2^(j-1)) \\ Michel Marcus, May 25 2013
Formula
a(n) = psi(n) + Sum_{j=1..n-1} psi(n-j)*2^(j-1), where psi(n) is the number of primitive words of length n over a 2-letter alphabet (expressible in terms of the Moebius function).
Comments