cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059418 Triangle T(n,k) arising from enumeration of permutations with ordered orbits, read by rows (1<=k<=n).

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 12, 7, 4, 1, 60, 33, 19, 7, 1, 360, 192, 109, 47, 11, 1, 2520, 1320, 737, 344, 102, 16, 1, 20160, 10440, 5742, 2801, 956, 198, 22, 1, 181440, 93240, 50634, 25349, 9493, 2342, 352, 29, 1, 1814400, 927360, 498312, 253426, 101293, 28229
Offset: 1

Views

Author

N. J. A. Sloane, Jan 30 2001

Keywords

Comments

From Peter Bala, Jul 08 2012: (Start)
A non-plane recursive tree is a rooted labeled plane tree (the children of a node are not ordered) with the property that the labels increase along any path from the root to a leaf. T(n,k) counts the total number of vertices of outdegree k among the set of n! non-plane recursive trees on n+1 vertices. An example is given below.
(End)

Examples

			1; 1,1; 3,2,1; 12,7,4,1; 60,33,19,7,1; ...
Row 3: [12,7,4,1]. There are 6 non-plane recursive trees on 4 nodes.
The total number of nodes of outdegree 0 = 1+2+2+2+2+3 = 12;
The total number of nodes of outdegree 1 = 3+1+1+1+1 = 7;
The total number of nodes of outdegree 2 = 1+1+1+1 = 4;
The total number of nodes of outdegree 3 = 1;
...................................................................
.0o......0o..........0o..........0o.........0o...........0o........
..|.......|........../.\........./.\......../.\........../|\.......
..|.......|........./...\......./...\....../...\......../.|.\......
.1o......1o.......1o.....o3...1o....o2...2o.....o1...../..|..\.....
..|....../.\.......|...........|..........|..........1o..2o...o3...
..|...../...\......|...........|..........|........................
.2o...2o.....o3...2o..........3o.........3o........................
..|................................................................
..|................................................................
.3o................................................................
....................................... - _Peter Bala_, Jul 08 2012
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 258, #10, F(n,k).

Crossrefs

Diagonals give A001710, A006595. A109822, A130534.

Programs

  • Mathematica
    t[n_, k_] := (n - 2)*t[n - 1, k] + t[n - 1, k - 1]; t[n_, n_] := 1; t[n_, 1] = n!/2; Table[t[n, k], {n, 10}, {k, n}] // Flatten (* Robert G. Wilson v, Jul 08 2012 *)

Formula

T(n, k) = (n-2)*T(n-1, k) + T(n-1, k-1), T(n, 1)=n!/2, T(n, n)=1.
From Peter Bala, Jul 08 2012: (Start)
E.g.f.: A(x,z) = x/(2-x){1/(1-z) - 1/(1-z)^(x-1)} = x*z + (x+x^2)*z^2/2! + (3*x+2*x^2+x^3)*z^3/3! + ....
A(x+1,z) is an e.g.f. for the row reverse of A109822 and A(x+2,z) generates the triangle of unsigned Stirling numbers of the first kind A130534 but with the first column omitted.
E.g.f. for column k: 1/(2^k*(1-x)) + (x-1)*sum {j = 0..k-1} 1/(j!*2^(k-j))*log^j(1/(1-x)) - see Drmota.
The row polynomial R(n,x) satisfies the recurrence equation R(n,x) = (x+n-2)*R(n-1,x) + (n-1)!*x with R(1,x) = x and also the recurrence R(n,x) = (x+2*n-3)*R(n-1,x) - (n-1)*(x+n-3)*R(n-2,x) with R(1,x) = x and R(2,x) = x+x^2. R(n,x) = {(x-1)*x*(x+1)*...*(x+n-2) - n!}/(x-2).
(End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jan 31 2001