A059446 Triangle T(n,k) = coefficient of x^n*y^k/(n!*k!) in 1/(1-x-y-x*y), read by rows in order 00, 10, 01, 20, 11, 02, ...
1, 1, 1, 2, 3, 2, 6, 10, 10, 6, 24, 42, 52, 42, 24, 120, 216, 300, 300, 216, 120, 720, 1320, 1968, 2268, 1968, 1320, 720, 5040, 9360, 14640, 18576, 18576, 14640, 9360, 5040, 40320, 75600, 122400, 166320, 184896, 166320, 122400, 75600, 40320
Offset: 0
Examples
Triangle begins: 1; 1,1; 2,3,2; 6,10,10,6; ...
Crossrefs
Cf. A008288.
Programs
-
Maple
read transforms; SERIES2(1/(1-x-y-x*y),x,y,12): SERIES2TOLISTMULT(%,x,y,12);
-
Mathematica
T[n_, k_] := n!*2^k*Hypergeometric2F1[-k, -k, -n, 1/2]; Table[T[n,k], {n, 0, 8}, {k, 0, n}]//Flatten (* Detlef Meya, Aug 18 2024 *)
Formula
E.g.f.: 1/(1-x-y-x*y).
T(n, k) = n!*2^k*Hypergeometric2F1([-k, -k], [-n], 1/2). - Detlef Meya, Aug 18 2024