cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059473 Triangle T(n, k) is coefficient of z^n*w^k in 1/(1 - 2*z - 2*w - 2*z*w) read by rows in order 00, 10, 01, 20, 11, 02, ...

Original entry on oeis.org

1, 2, 2, 4, 10, 4, 8, 32, 32, 8, 16, 88, 148, 88, 16, 32, 224, 536, 536, 224, 32, 64, 544, 1696, 2440, 1696, 544, 64, 128, 1280, 4928, 9344, 9344, 4928, 1280, 128, 256, 2944, 13504, 31936, 42256, 31936, 13504, 2944, 256, 512, 6656, 35456, 100736, 167072, 167072, 100736, 35456, 6656, 512
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2001

Keywords

Examples

			[0]  1;
[1]  2,   2;
[2]  4,  10,    4;
[3]  8,  32,   32,    8;
[4] 16,  88,  148,   88,   16;
[5] 32, 224,  536,  536,  224,  32;
[6] 64, 544, 1696, 2440, 1696, 544, 64;
...
		

Crossrefs

Column k = 0 gives A000079.
T(n, n) gives A098270.

Programs

  • Maple
    read transforms; SERIES2(1/(1-2*z-2*w-2*z*w),x,y,12): SERIES2TOLIST(%,x,y,12);
    # Alternative:
    T := (n, k) -> 2^n*binomial(n, k)*hypergeom([-k, -n + k], [-n], -1/2):
    for n from 0 to 10 do seq(simplify(T(n, k)), k = 0 .. n) end do; # Peter Luschny, Nov 26 2021
  • Mathematica
    T[n_, k_] := Sum[2^(n + k - j)*Binomial[n, j]*Binomial[n + k - j, n], {j, 0, n}]; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Oct 04 2017 *)

Formula

G.f.: 1/(1 - 2*z - 2*w - 2*z*w).
T(n, k) = Sum_{j=0..n} 2^(n + k - j)*binomial(n, j)*binomial(n + k - j, n). - G. C. Greubel, Oct 04 2017
T(n, k) = 2^n*binomial(n, k)*hypergeom([-k, k - n], [-n], -1/2). - Peter Luschny, Nov 26 2021