A059473 Triangle T(n, k) is coefficient of z^n*w^k in 1/(1 - 2*z - 2*w - 2*z*w) read by rows in order 00, 10, 01, 20, 11, 02, ...
1, 2, 2, 4, 10, 4, 8, 32, 32, 8, 16, 88, 148, 88, 16, 32, 224, 536, 536, 224, 32, 64, 544, 1696, 2440, 1696, 544, 64, 128, 1280, 4928, 9344, 9344, 4928, 1280, 128, 256, 2944, 13504, 31936, 42256, 31936, 13504, 2944, 256, 512, 6656, 35456, 100736, 167072, 167072, 100736, 35456, 6656, 512
Offset: 0
Examples
[0] 1; [1] 2, 2; [2] 4, 10, 4; [3] 8, 32, 32, 8; [4] 16, 88, 148, 88, 16; [5] 32, 224, 536, 536, 224, 32; [6] 64, 544, 1696, 2440, 1696, 544, 64; ...
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Maple
read transforms; SERIES2(1/(1-2*z-2*w-2*z*w),x,y,12): SERIES2TOLIST(%,x,y,12); # Alternative: T := (n, k) -> 2^n*binomial(n, k)*hypergeom([-k, -n + k], [-n], -1/2): for n from 0 to 10 do seq(simplify(T(n, k)), k = 0 .. n) end do; # Peter Luschny, Nov 26 2021
-
Mathematica
T[n_, k_] := Sum[2^(n + k - j)*Binomial[n, j]*Binomial[n + k - j, n], {j, 0, n}]; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Oct 04 2017 *)
Formula
G.f.: 1/(1 - 2*z - 2*w - 2*z*w).
T(n, k) = Sum_{j=0..n} 2^(n + k - j)*binomial(n, j)*binomial(n + k - j, n). - G. C. Greubel, Oct 04 2017
T(n, k) = 2^n*binomial(n, k)*hypergeom([-k, k - n], [-n], -1/2). - Peter Luschny, Nov 26 2021