A059494 For odd p such that 2^p-1 is a prime (A000043), write 2^p-1 = x^2+3*y^2; sequence gives values of x.
2, 2, 10, 46, 362, 298, 46162, 1505304098, 17376907720394, 9286834445316902, 9328321181472828398, 2107597973657165184339850860393713575649657317180489057212823189967494080057958, 22958222111004899714849436789827362390710508069726899926224050897274623732073762499062593658
Offset: 1
Examples
p=7: 127 = 10^2 + 3*3^2, so a(3) = 10.
References
- F. Lemmermeyer, Reciprocity Laws From Euler to Eisenstein, Springer-Verlag, 2000, p. 59.
Links
- Phil Moore, Tony Reix and others, Online Discussion
Programs
-
PARI
f(p, P,a,m)= P=2^p-1; a=lift(sqrt(Mod(-3,P))); m=[P,a;0,1]; (m*qflll(m,1))~[1,] for(n=1,11,print(abs(f([3,5,7,13,17,19,31,61,89,107,521][n])[1]))) \\ Joshua Zucker, May 23 2006
Extensions
More terms from Noam D. Elkies, Jun 25 2001
Corrected and extended by Joshua Zucker, May 23 2006
Comments