A059505 Transform of A059502 applied to sequence 2,3,4,...
2, 5, 14, 40, 114, 323, 910, 2551, 7120, 19796, 54852, 151525, 417434, 1147145, 3145394, 8606848, 23507190, 64093031, 174474790, 474261691, 1287398452, 3490267820, 9451319304, 25565098825, 69080289074
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for sequences related to boustrophedon transform
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6,-1).
Programs
-
Mathematica
LinearRecurrence[{6,-11,6,-1},{2,5,14,40}, 50] (* or *) Rest[CoefficientList[Series[x*(2 - 7*x + 6*x^2 - x^3)/(1 - 3*x + x^2)^2, {x,0,50}], x]] (* G. C. Greubel, Sep 10 2017 *)
-
PARI
x='x+O('x^50); Vec(x*(2-7*x+6*x^2-x^3)/(1-3*x+x^2)^2) \\ G. C. Greubel, Sep 10 2017
Formula
G.f.: x*(2 - 7*x + 6*x^2 - x^3)/(1 - 3*x + x^2)^2.
From G. C. Greubel, Sep 10 2017: (Start)
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4).
a(n) = ((3 - n)*Fibonacci(2*n) + (5 + 3*n)*Fibonacci(2*n - 1))/5. (End)
Comments