cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059527 Decimal expansion of imaginary part of solution to z = log z.

Original entry on oeis.org

1, 3, 3, 7, 2, 3, 5, 7, 0, 1, 4, 3, 0, 6, 8, 9, 4, 0, 8, 9, 0, 1, 1, 6, 2, 1, 4, 3, 1, 9, 3, 7, 1, 0, 6, 1, 2, 5, 3, 9, 5, 0, 2, 1, 3, 8, 4, 6, 0, 5, 1, 2, 4, 1, 8, 8, 7, 6, 3, 1, 2, 7, 8, 1, 9, 1, 4, 3, 5, 0, 5, 3, 1, 3, 6, 1, 2, 0, 4, 9, 8, 8, 4, 1, 8, 8, 8, 1, 3, 2, 3, 4, 3, 8, 7, 9, 4, 0, 1, 5, 6, 1, 0, 3, 8
Offset: 1

Views

Author

Fabian Rothelius, Jan 21 2001

Keywords

Comments

Repeatedly take logs, starting from any number not equal to 0, 1, e, e^e, e^(e^e), etc. and you will converge to 0.31813150... + 1.33723570...*I.

Examples

			z = 0.31813150520476413531265425158766451720351761387139986692237... + 1.33723570143068940890116214319371061253950213846051241887631... *i.
		

Crossrefs

Real part is A059526.
Cf. A030178.

Programs

  • Mathematica
    RealDigits[ Im[ N[ FixedPoint[ Log, 1 + I, 910], 105]]] [[1]]
    RealDigits[ N[ Im[ ProductLog[-1]], 105]][[1]] (* Jean-François Alcover, Feb 01 2012 *)
  • PARI
    z=I;for(k=1,16000,z=log(z));imag(z)  \\ Using realprecision \p 2010. - Stanislav Sykora, Jun 07 2015
    
  • PARI
    z=I; for(k=1, 10, z-=(z-log(z))/(1-1/z)); imag(z) \\ Jeremy Tan, Sep 23 2017

Extensions

More terms from Vladeta Jovovic, Feb 26 2001
Edited and extended by Robert G. Wilson v, Aug 22 2002