cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A038166 G.f.: 1/((1-x)*(1-x^2))^6.

Original entry on oeis.org

1, 6, 27, 92, 273, 714, 1715, 3816, 8007, 15938, 30381, 55692, 98735, 169806, 284349, 464672, 742950, 1164228, 1791426, 2710344, 4037670, 5928988, 8591154, 12294672, 17392258, 24337404, 33711510, 46251016, 62886162, 84779748
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    A038166 := proc(n)
        add( A038163(n-i)*A038163(i),i=0..n) ;
    end proc:
    seq(A038166(n),n=0..30) ;# R. J. Mathar, Feb 22 2021
  • Mathematica
    CoefficientList[Series[1/((1-x)(1-x^2))^6,{x,0,40}],x] (* or *) LinearRecurrence[ {6,-9,-16,60,-24,-116,144,66,-220,66,144,-116,-24,60,-16,-9,6,-1},{1,6,27,92,273,714,1715,3816,8007,15938,30381,55692,98735,169806,284349,464672,742950,1164228},40] (* Harvey P. Dale, Jun 10 2013 *)

Formula

a(2*k) = binomial(k + 8, 8)*(2*k + 9)*(8*k^2 + 72*k + 55)/(11*5*9) = A059603(k); a(2*k + 1) = 2*binomial(k + 9, 9)*(8*k^2 + 80*k + 165)/(11*5) = 2*A059624(k), k >= 0; Wolfdieter Lang, Feb 02 2000
a(0)=1, a(1)=6, a(2)=27, a(3)=92, a(4)=273, a(5)=714, a(6)=1715, a(7)=3816, a(8)=8007, a(9)=15938, a(10)=30381, a(11)=55692, a(12)=98735, a(13)=169806, a(14)=284349, a(15)=464672, a(16)=742950, a(17)=1164228, a(n)=6*a(n-1)-9*a(n-2)-16*a(n-3)+60*a(n-4)-24*a(n-5)-116*a(n-6)+144*a(n-7)+ 66*a(n-8)- 220*a(n-9)+66*a(n-10)+144*a(n-11)-116*a(n-12)-24*a(n-13)+60*a(n-14)-16*a(n-15)- 9*a(n-16)+ 6*a(n-17)-a(n-18). - Harvey P. Dale, Jun 10 2013
Showing 1-1 of 1 results.