cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A059937 Sum of binary numbers with n 1's and two (possibly leading) 0's.

Original entry on oeis.org

0, 7, 45, 186, 630, 1905, 5355, 14308, 36828, 92115, 225225, 540606, 1277874, 2981797, 6881175, 15728520, 35651448, 80215911, 179306325, 398458690, 880803630, 1937768217, 4244635395, 9261022956, 20132658900, 43620761275
Offset: 0

Views

Author

Henry Bottomley, Feb 13 2001

Keywords

Examples

			a(2) = 45 since binary sum of 1100 + 1010 + 1001 + 0110 + 0101 + 0011 is 12 + 10 + 9 + 6 + 5 + 3 = 45.
		

Crossrefs

Programs

  • PARI
    concat(0, Vec(x*(12*x^2-18*x+7)/((x-1)^3*(2*x-1)^3) + O(x^100))) \\ Colin Barker, Sep 13 2014

Formula

a(n) = (2^(n+2) - 1)*n*(n+1)/2 = A059672(n) + A059938(n) = a(n-1)*2*(n+1)/(n-1) + n(n+1)/2.
G.f.: x*(12*x^2-18*x+7) / ((x-1)^3*(2*x-1)^3). - Colin Barker, Sep 13 2014

A059938 Sum of binary numbers with n 1's and two (non-leading) 0's.

Original entry on oeis.org

0, 4, 31, 141, 506, 1590, 4593, 12523, 32740, 82908, 204755, 495561, 1179582, 2768818, 6422437, 14745495, 33554312, 75759480, 169869159, 378535765, 838860610, 1849687854, 4060086041, 8875147011, 19327352556, 41943039700
Offset: 0

Views

Author

Henry Bottomley, Feb 13 2001

Keywords

Examples

			a(2) = 1100_2 + 1010_2 + 1001_2 = 12 + 10 + 9 = 31.
		

Crossrefs

Programs

  • PARI
    concat(0, Vec(x*(8*x^3-6*x^2-5*x+4)/((x-1)^3*(2*x-1)^3) + O(x^100))) \\ Colin Barker, Sep 14 2014

Formula

a(n) = n^2*2^(n+1) - n*(n-1)/2 = A059937(n) - A059672(n) = A059937(n-1) + 2^(n+1)*n*(n+1)/2.
G.f.: x*(8*x^3-6*x^2-5*x+4) / ((x-1)^3*(2*x-1)^3). - Colin Barker, Sep 14 2014

A356117 T(n, k) = [x^k] (1/2 - x)^(-n) - (1 - x)^(-n).

Original entry on oeis.org

0, 1, 3, 3, 14, 45, 7, 45, 186, 630, 15, 124, 630, 2540, 8925, 31, 315, 1905, 8925, 35770, 128898, 63, 762, 5355, 28616, 128898, 515844, 1891890, 127, 1785, 14308, 85932, 429870, 1891890, 7568484, 28113228, 255, 4088, 36828, 245640, 1351350, 6487272, 28113228, 112456344, 421717725
Offset: 0

Views

Author

Peter Luschny, Aug 22 2022

Keywords

Examples

			Triangle T(n, k) starts:
[0]   0;
[1]   1,    3;
[2]   3,   14,    45;
[3]   7,   45,   186,    630;
[4]  15,  124,   630,   2540,    8925;
[5]  31,  315,  1905,   8925,   35770,  128898;
[6]  63,  762,  5355,  28616,  128898,  515844,  1891890;
[7] 127, 1785, 14308,  85932,  429870, 1891890,  7568484,  28113228;
[8] 255, 4088, 36828, 245640, 1351350, 6487272, 28113228, 112456344, 421717725;
		

Crossrefs

Cf. A000225 (column 0), A059672 (column 1), A059937 (column 2), A131568 (main diagonal), A134346, A327318.

Programs

  • Maple
    ser := series((1/2 - x)^(-n) - (1 - x)^(-n), x, 20):
    seq(seq(coeff(ser, x, k), k = 0..n), n = 0..9);
  • Mathematica
    row[n_] := CoefficientList[Series[(1/2 - x)^(-n) - (1 - x)^(-n), {x, 0, n}], x]; row[0] = {0}; Table[row[n], {n, 0, 8}] // Flatten (* Amiram Eldar, Aug 22 2022 *)

Formula

T(n, k) = (2^(n+k) - 1) * binomial(n+k-1, k). - John Keith, Aug 23 2022

A348621 The number of additions required to compute the permanent of general n X n matrices using Ryser's formula without Gray code ordering.

Original entry on oeis.org

0, 4, 21, 82, 275, 836, 2373, 6406, 16647, 41992, 103433, 249866, 593931, 1392652, 3227661, 7405582, 16842767, 38010896, 85196817, 189792274, 420478995, 926941204, 2034237461, 4445962262, 9680453655, 21005074456, 45432700953, 97978941466, 210721832987, 452045307932
Offset: 1

Views

Author

Stefano Spezia, Oct 25 2021

Keywords

References

  • Herbert John Ryser, Combinatorial Mathematics, volume 14 of Carus Mathematical Monographs. American Mathematical Soc., (1963), pp. 24-28.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{8,-25,38,-28,8},{0,4,21,82,275},30]

Formula

a(n) = (n^2 - 2*n + 2)*2^(n-1) + n - 2.
a(n) = n*A000337(n-1) + A000079(n) - 2.
a(n) = 8*a(n-1) - 25*a(n-2) + 38*a(n-3) - 28*a(n-4) + 8*a(n-5) for n > 5.
O.g.f.: x^2*(4 - 11*x + 14*x^2 - 8*x^3)/((1 - x)^2*(1 - 2*x)^3).
E.g.f.: 1 + exp(x)*(x - 2) + exp(2*x)*(2*x^2 - x + 1).
Showing 1-4 of 4 results.