cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059682 Triangle T(n,k) giving number of 2 X k polyominoes with n cells (n >= 2, 1<=k<=n-1).

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 0, 2, 3, 0, 0, 1, 6, 5, 0, 0, 0, 2, 11, 5, 0, 0, 0, 1, 10, 19, 7, 0, 0, 0, 0, 3, 22, 28, 7, 0, 0, 0, 0, 1, 15, 52, 40, 9, 0, 0, 0, 0, 0, 3, 45, 90, 53, 9, 0, 0, 0, 0, 0, 1, 21, 119, 158, 69, 11, 0, 0, 0, 0, 0, 0, 4, 73, 257, 238, 86, 11, 0, 0, 0, 0, 0, 0, 1, 28, 237, 505, 360, 106, 13
Offset: 2

Views

Author

N. J. A. Sloane, Feb 05 2001

Keywords

Examples

			Triangle starts:
1;
0,1;
0,1,3;
0,0,2,3;
...
		

Crossrefs

Main diagonal gives A109613(n-2).
Cf. A059683 (3xk), A059684 (4xk).

Programs

  • Mathematica
    rows = 13; gf = ((y^9 - y^8)*x^6 + y^8*x^5 + (y^7 - 2*y^6 + y^5)*x^4 + (y^6 - y^3)*x^3 + (-y^4 + y^2)*x^2 + (-y^2 - y)*x + 1)*y^2*x/((y^3*x^2 + (y^2 + y)*x - 1)*(y*x - 1)*(y^2*x - 1)*(y^6*x^4 + (y^4 + y^2)*x^2 - 1));
    coes = CoefficientList[#, x]& /@ CoefficientList[gf + O[y]^(rows+2), y];
    T[n_, k_] := coes[[n+1, k+1]];
    Table[T[n, k], {n, 2, rows+1}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Nov 12 2017, after Vladeta Jovovic *)

Formula

G.f.: ((y^9-y^8)*x^6+y^8*x^5+(y^7-2*y^6+y^5)*x^4+(y^6-y^3)*x^3+(-y^4+y^2)*x^2+(-y^2-y)*x+1)*y^2*x/((y^3*x^2+(y^2+y)*x-1)*(y*x-1)*(y^2*x-1)*(y^6*x^4+(y^4+y^2)*x^2-1)). - Vladeta Jovovic, Apr 02 2002

Extensions

More terms from Vladeta Jovovic, Apr 02 2002