A059692 Table of carryless products i * j, i>=0, j>=0, read by antidiagonals.
0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 4, 3, 0, 0, 4, 6, 6, 4, 0, 0, 5, 8, 9, 8, 5, 0, 0, 6, 0, 2, 2, 0, 6, 0, 0, 7, 2, 5, 6, 5, 2, 7, 0, 0, 8, 4, 8, 0, 0, 8, 4, 8, 0, 0, 9, 6, 1, 4, 5, 4, 1, 6, 9, 0, 0, 10, 8, 4, 8, 0, 0, 8, 4, 8, 10, 0, 0, 11, 20, 7, 2, 5, 6, 5, 2, 7, 20, 11, 0
Offset: 0
Examples
Table begins: 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ... 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 ... 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 20, 22, 24, 26, 28, 20 ... 0, 3, 6, 9, 2, 5, 8, 1, 4, 7, 30, 33, 36, 39, 32, 35 ... 0, 4, 8, 2, 6, 0, 4, 8, 2, 6, 40, 44, 48, 42, 46, 40 ... ... T(12, 97) = 954 since we have 12 X 97 = carryless sum of 900, (180 mod 100=)80, 70 and (14 mod 10=)4 = 954.
Links
- Stefano Spezia, First 140 antidiagonals of the table, flattened
- David Applegate, Marc LeBrun and N. J. A. Sloane, Carryless Arithmetic (I): The Mod 10 Version.
- Index entries for sequences related to carryless arithmetic
Crossrefs
Programs
-
Mathematica
len[num_]:=Length[IntegerDigits[num]]; digit[num_,d_]:=Part[IntegerDigits[num],d]; T[i_, j_] := FromDigits[Reverse[CoefficientList[PolynomialMod[Sum[digit[i,c]*x^(len[i]-c), {c, len[i]}]*Sum[digit[j,r]*x^(len[j]-r), {r, len[j]}], 10], x]]]; Flatten[Table[T[i - j, j], {i, 0, 12}, {j, 0, i}]] (* Stefano Spezia, Sep 26 2022 *)
-
PARI
T(n,k) = fromdigits(lift(Vec( Mod(Pol(digits(n)),10) * Pol(digits(k))))); \\ Kevin Ryde, Sep 27 2022
Extensions
Minor edits by N. J. A. Sloane, Aug 24 2010