A059736 A class of polytopal spheres.
0, 0, 1, 0, 1, 1, 4, 6, 16, 25, 52, 89, 175, 308, 593, 1066, 2031, 3743, 7124, 13330, 25445, 48134, 92160, 175743, 337541, 647269, 1246802, 2400776, 4636319, 8955984, 17334720, 33570730, 65107971, 126355239, 245492141, 477284073
Offset: 1
Links
- V. A. Liskovets, Some easily derivable sequences, J. Integer Sequences, 3 (2000), #00.2.2.
Programs
-
Maple
A016116 := n->2^floor(n/2):with(numtheory): A000016 := proc(n) local d,t1: if n = 0 then RETURN(1) else t1 := 0; for d from 1 to n do if n mod d = 0 and d mod 2 = 1 then t1 := t1+phi(d)*2^(n/ d)/(2*n); fi; od; RETURN(t1); fi; end: A007147 := n->1/2*(A016116(n-1)+A000016(n)): A059736 := n->A007147(n) - floor(n^2/12) - 1: for j from 1 to 100 do printf(`%d,`, A059736(j)) od:
-
Mathematica
a[n_] := (1/2)*(2^Quotient[n - 1, 2] + Total[(Mod[#, 2]*EulerPhi[#]*2^(n/#) &) /@ Divisors[n]]/(2*n)) - Floor[n^2/12] - 1; Array[a, 36] (* Jean-François Alcover, Aug 30 2019 *)
Formula
a(n) = A007147(n) - [n^2/12] - 1.
Extensions
More terms from James Sellers, Feb 20 2001