cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059736 A class of polytopal spheres.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 4, 6, 16, 25, 52, 89, 175, 308, 593, 1066, 2031, 3743, 7124, 13330, 25445, 48134, 92160, 175743, 337541, 647269, 1246802, 2400776, 4636319, 8955984, 17334720, 33570730, 65107971, 126355239, 245492141, 477284073
Offset: 1

Views

Author

N. J. A. Sloane, Feb 09 2001

Keywords

Programs

  • Maple
    A016116 := n->2^floor(n/2):with(numtheory): A000016 := proc(n) local d,t1: if n = 0 then RETURN(1) else t1 := 0; for d from 1 to n do if n mod d = 0 and d mod 2 = 1 then t1 := t1+phi(d)*2^(n/ d)/(2*n); fi; od; RETURN(t1); fi; end: A007147 := n->1/2*(A016116(n-1)+A000016(n)): A059736 := n->A007147(n) - floor(n^2/12) - 1: for j from 1 to 100 do printf(`%d,`, A059736(j)) od:
  • Mathematica
    a[n_] := (1/2)*(2^Quotient[n - 1, 2] + Total[(Mod[#, 2]*EulerPhi[#]*2^(n/#) &) /@ Divisors[n]]/(2*n)) - Floor[n^2/12] - 1;
    Array[a, 36] (* Jean-François Alcover, Aug 30 2019 *)

Formula

a(n) = A007147(n) - [n^2/12] - 1.

Extensions

More terms from James Sellers, Feb 20 2001