A059760 a(n) is the number of edges (one-dimensional faces) in the convex polytope of real n X n doubly stochastic matrices.
0, 0, 1, 15, 240, 5040, 147240, 5959800, 323850240, 22800476160, 2017745251200, 219066851203200, 28615863103027200, 4425987756321331200, 799788468703877452800, 166940001463941433728000, 39857401887591969128448000, 10792266259145851457961984000
Offset: 0
Keywords
Examples
a(3) = 15 because there are 3! = 6 vertices and C(6,2) intervals and in this case all are edges so a(3) = C(6,2) = 15.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..250
Programs
-
Maple
with(combinat): for n from 1 to 30 do printf(`%d,`,1/2* n! * sum(binomial(n,k)*(k-1)!, k=2..n)) od:
-
Mathematica
a[n_] = If[n==0, 0, (n*n!/2)*(HypergeometricPFQ[{1, 1, 1-n}, {2}, -1]-1)]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 19 2017 *)
Formula
a(n) = 1/2* n! * Sum_{k=2...n} C(n,k)*(k-1)!.
a(n) ~ Pi * n^(2*n) / exp(2*n - 1). - Vaclav Kotesovec, Jun 09 2019
Extensions
More terms from James Sellers, Feb 21 2001
Comments