A059773 Maximum size of Aut(G) where G is a finite group of order n.
1, 1, 2, 6, 4, 6, 6, 168, 48, 20, 10, 24, 12, 42, 8, 20160, 16, 432, 18, 40, 42, 110, 22, 336, 480, 156, 11232, 84, 28, 120, 30, 9999360, 20, 272, 24, 864, 36, 342, 156, 672, 40, 252, 42, 220, 192, 506, 46, 40320, 2016, 12000, 32, 312, 52, 303264, 110, 1008
Offset: 1
Examples
The corresponding groups are 1, Z2, Z3, (Z2)^2, Z5, S3, Z7, (Z2)^3, (Z3)^2, D5, Z11, A4, Z13, D7, Z15, (Z2)^4, Z17, ...
Links
- Eric M. Schmidt, Table of n, a(n) for n = 1..767
Crossrefs
Cf. A061350.
Programs
-
GAP
A059773 := function(n) local max, f, i; if IsPrimePowerInt(n) then f := PrimePowersInt(n); return Product([0..f[2]-1], k->n-f[1]^k); fi; max := 1; for i in [1..NumberSmallGroups(n)] do max := Maximum(max, Size(AutomorphismGroup(SmallGroup(n,i)))); od; return max; end; # Eric M. Schmidt, Mar 02 2013
Extensions
More terms from Ahmed Fares (ahmedfares(AT)my-deja.com), Jun 09 2001
a(18)-a(56) from Stephen A. Silver, Feb 26 2013
Comments