cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Stephen A. Silver

Stephen A. Silver's wiki page.

Stephen A. Silver has authored 3 sequences.

A214003 Number of degree-n permutations of prime order.

Original entry on oeis.org

0, 1, 5, 17, 69, 299, 1805, 9099, 37331, 205559, 4853529, 49841615, 789513659, 9021065871, 70737031469, 420565124399, 22959075244095, 385032305178719, 10010973102879761, 152163983393187399, 1498273284120348539, 15639918041915598815, 1296204202723400597109
Offset: 1

Author

Stephen A. Silver, Feb 15 2013

Keywords

Examples

			The symmetric group S_5 has 25 elements of order 2, 20 elements of order 3, and 24 elements of order 5. All other elements are of nonprime order (1, 4, or 6), so a(5) = 25 + 20 + 24 = 69.
		

Programs

  • Maple
    b:= proc(n,p) option remember;
          `if`(n add(b(n, ithprime(i)), i=1..numtheory[pi](n)):
    seq(a(n), n=1..30);  # Alois P. Heinz, Feb 16 2013
    # second Maple program:
    b:= proc(n, g) option remember; `if`(n=0, `if`(isprime(g), 1, 0),
          add(b(n-j, ilcm(j, g))*(n-1)!/(n-j)!, j=1..n))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=1..23);  # Alois P. Heinz, Jan 19 2023
  • Mathematica
    f[list_] :=Total[list]!/Apply[Times, list]/Apply[Times, Map[Length, Split[list]]!]; Table[Total[Map[f, Select[Partitions[n],PrimeQ[Apply[LCM, #]] &]]], {n, 1,23}] (* Geoffrey Critzer, Nov 08 2015 *)

Formula

a(n) = Sum_{p prime} A057731(n,p).
E.g.f.: exp(x)*Sum_{p in Primes} exp(x^p/p)-1. - Geoffrey Critzer, Nov 08 2015

A055397 Maximum population of an n X n stable pattern in Conway's Game of Life.

Original entry on oeis.org

0, 4, 6, 8, 16, 18, 28, 36, 43, 54, 64, 76, 90, 104, 119, 136, 152, 171, 190, 210, 232, 253, 276, 301, 326, 352, 379, 407, 437, 467, 497, 531, 563, 598, 633, 668, 706, 744, 782, 824, 864, 907, 949, 993, 1039, 1085, 1132, 1181, 1229, 1280, 1331, 1382, 1436
Offset: 1

Author

Stephen A. Silver, Jun 25 2000

Keywords

Examples

			a(3) = 6 because a ship has 6 cells and no other 3 X 3 stable pattern has more.
		

Formula

a(n) = (n^2)/2 + O(n).
For n >= 55, floor(n^2/2 + 17*n/27 - 2) <= a(n) <= ceiling(n^2/2 + 17*n/27 - 2), which gives all values of this sequence within +- 1.

Extensions

a(11)-a(27) from Nathaniel Johnston, May 15 2011, based on table in Chu et al.
a(28)-a(53) from Nathaniel Johnston, Nov 27 2013, based on work by Chu et al.

A048648 Order of n-th stable homotopy group of spheres.

Original entry on oeis.org

2, 2, 24, 1, 1, 2, 240, 4, 8, 6, 504, 1, 3, 4, 960, 4, 16, 16, 528, 24, 4, 4, 3144960, 4, 4, 12, 24, 2, 3, 6, 65280, 16, 32, 32, 114912, 6, 12, 120, 1267200, 384, 32, 96, 552, 8, 5760, 48, 12579840, 64, 12, 24, 384, 24, 16, 8, 20880, 2, 8, 4, 687456, 4, 1
Offset: 1

Keywords

Comments

Proved by Serre to be finite for all positive n.
The best current reference is Isaksen-Wang-Xu, Table 1. - Charles Rezk, Aug 22 2020

Examples

			Pi_1^S = Pi_4(S^3) = Z/2Z, so a(1) = |Z/2Z| = 2.
		

References

  • D. B. Fuks, "Spheres, homotopy groups of the", Encyclopaedia of Mathematics, Vol. 8.
  • S. O. Kochman, Stable homotopy groups of spheres. A computer-assisted approach. Lecture Notes in Mathematics, 1423. Springer-Verlag, Berlin, 1990. 330 pp. ISBN: 3-540-52468-1. [Math. Rev. 91j:55016]
  • Douglas C. Ravenel, Complex cobordism and stable homotopy groups of spheres, AMS Chelsea Publishing, 2003.
  • Hirosi Toda, Composition Methods in Homotopy Groups of Spheres, Princeton University Press, 1962.

Crossrefs

Cf. A001676.

Formula

a(n) = |Pi_n^S| = |Pi_{k+n}(S^k)| for k > n+1.

Extensions

More terms from Alex Fink (finka(AT)math.ucalgary.ca), Aug 10 2006
a(23) and a(29)-a(33) corrected by Charles Rezk, Aug 22 2020
More terms from Charles Rezk, Aug 25 2020