cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A122962 Duplicate of A048648.

Original entry on oeis.org

2, 2, 24, 1, 1, 2, 240
Offset: 1

Views

Author

Jeff Strom (jeff.strom(AT)wmich.edu), Oct 26 2006

Keywords

Comments

Same as A048648 Order of n-th stable homotopy group of spheres. [Jonathan Sondow, Jun 16 2011]

Extensions

Definition and terms corrected by Jonathan Sondow, Jun 16 2011

A001676 Number of h-cobordism classes of smooth homotopy n-spheres.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 28, 2, 8, 6, 992, 1, 3, 2, 16256, 2, 16, 16, 523264, 24, 8, 4, 69524373504, 2, 4, 12, 67100672, 2, 3, 3, 7767211311104, 8, 32, 32, 3014494287036416, 6, 24, 120, 2303837503821447168, 192, 32, 96, 341653284209033216, 8, 11520, 48, 798366828940770681028608, 32, 12, 24, 11852230872517975212032, 24, 32, 8, 91678339751618435453288448, 1, 8, 4, 1986677733776616536315084668928, 4, 1, 24, 284423744326342962334231917756416
Offset: 1

Views

Author

Keywords

Comments

For n not equal to 4 (and possibly for all n) this is the number of oriented diffeomorphism classes of differentiable structures on the n-sphere.
a(3) = 1 follows now that the Poincaré conjecture has been proved.
a(n) for n != 4 is the order of S_n, the n-th group in Tables 1 and 2 (explained in Further Details p. 807) of Milnor 2011.
The sequence is essentially given in the rightmost column of tables 1 and 2 in Isaksen, Wang & Xu (2020). It corrects some errors in earlier work. - Andrey Zabolotskiy, Nov 27 2022

References

  • S. O. Kochman, Stable homotopy groups of spheres. A computer-assisted approach. Lecture Notes in Mathematics, 1423. Springer-Verlag, Berlin, 1990. 330 pp. ISBN: 3-540-52468-1. [Math. Rev. 91j:55016]
  • S. O. Kochman and M. E. Mahowald, On the computation of stable stems. The Cech Centennial (Boston, MA, 1993), 299-316, Contemp. Math., 181, Amer. Math. Soc., Providence, RI, 1995. [Math. Rev. 96j:55018]
  • J. P. Levine, Lectures on groups of homotopy spheres. In Algebraic and geometric topology (New Brunswick, NJ, 1983), 62-95, Lecture Notes in Math., 1126, Springer, Berlin, 1985.
  • J. W. Milnor and J. D. Stasheff, Characteristic Classes, Princeton, 1974, p. 285.
  • S. P. Novikov ed., Topology I, Encyc. of Math. Sci., vol. 12.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • H. Whitney, The work of John W. Milnor, pp. 48-50 of Proc. Internat. Congress Mathematicians, Stockholm, 1962.

Crossrefs

Extensions

More terms from Paul Muljadi, Mar 17 2011
Further terms from Jonathan Sondow, Jun 16 2011
The terms a(56), a(57), a(63) corrected by Andrey Zabolotskiy, Nov 27 2022

A189996 Bott periodicity: the homotopy groups of the stable orthogonal group are periodic with period 8 and repeat like [2, 2, 1, 0, 1, 1, 1, 0].

Original entry on oeis.org

2, 2, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 1, 0
Offset: 0

Views

Author

Jonathan Sondow, Jun 17 2011

Keywords

Comments

Bott proved that the n-th homotopy group of the stable orthogonal group is Z/(a(n)*Z), where Z is the integers and Z/(0*Z), Z/(1*Z), Z/(2*Z) are the cyclic groups of order infinity, 1, 2, respectively. For details, see the Wikipedia orthogonal group link.
For references and additional links, see the Wikipedia Bott periodicity link.

Crossrefs

Cf. A048648.

Programs

  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 1},{2, 2, 1, 0, 1, 1, 1, 0},104] (* Ray Chandler, Aug 25 2015 *)
    PadRight[{},120,{2,2,1,0,1,1,1,0}] (* Harvey P. Dale, Jun 13 2017 *)
  • PARI
    a(n)=[2, 2, 1, 0, 1, 1, 1, 0][n%8+1] \\ Charles R Greathouse IV, Jul 13 2016
    
  • PARI
    Vec((2 + 2*x + x^2 + x^4 + x^5 + x^6) / ((1 - x)*(1 + x)*(1 + x^2)*(1 + x^4)) + O(x^90)) \\ Colin Barker, Nov 02 2019

Formula

a(n) = 2, 2, 1, 0, 1, 1, 1, 0 if n == 0, 1, 2, 3, 4, 5, 6, 7 (mod 8), respectively.
From Colin Barker, Nov 02 2019: (Start)
G.f.: (2 + 2*x + x^2 + x^4 + x^5 + x^6) / ((1 - x)*(1 + x)*(1 + x^2)*(1 + x^4)).
a(n) = a(n-8) for n>7.
(End)

A345262 a(n) is the order of the image of the J-homomorphism in the stable homotopy groups of spheres.

Original entry on oeis.org

1, 2, 1, 24, 1, 1, 1, 240, 2, 2, 1, 504, 1, 1, 1, 480, 2, 2, 1, 264, 1, 1, 1, 65520, 2, 2, 1, 24, 1, 1, 1, 16320, 2, 2, 1, 28728, 1, 1, 1, 13200, 2, 2, 1, 552, 1, 1, 1, 131040, 2, 2, 1, 24, 1, 1, 1, 6960, 2, 2, 1, 171864, 1, 1, 1, 32640, 2, 2, 1, 24, 1, 1, 1
Offset: 0

Views

Author

Tom Harris, Jun 12 2021

Keywords

Comments

Im(J) is a finite cyclic subgroup of Pi_n^S and has known order a(n) calculated by Adams using the Adams conjecture, subsequently proven by Quillen. When n is 3 or 7 mod 8 the value a(n) is related to the Bernoulli numbers; the other values of a(n) are 8-periodic (after an exceptional n=0).

References

  • D. Ravenel, Complex cobordism and stable homotopy groups of spheres (2ed), AMS Chelsea Publishing, (2003), ISBN: 978-0-8218-2967-7.

Crossrefs

Cf. A006863, A079612. Divides A048648.

Programs

  • Python
    from sympy import bernoulli
    def a(n):
        if n == 0:
            return 1
        n_ = n % 8
        d = {0:2, 1:2, 2:1, 4:1, 5:1, 6:1}
        if n_ in [3, 7]:
            k = (n+1)//4
            return (bernoulli(2*k)/(4*k)).denominator
        else:
            return d[n_]

Formula

a(n) is:
2 if n = 0 or 1 mod 8 (except a(0) = 1)
1 if n = 2, 4, 5 or 6 mod 8
A006863((n+1)/4) if n = 3 or 7 mod 8.
(A006863(k) = denominator of B_2k/4k, where B_m are the Bernoulli numbers.)
Showing 1-4 of 4 results.