cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A228689 a(n) = A001676(4*n + 3).

Original entry on oeis.org

1, 28, 992, 16256, 523264, 69524373504, 67100672, 7767211311104, 3014494287036416, 2303837503821447168, 341653284209033216, 798366828940770681028608, 11852230872517975212032, 91678339751618435453288448, 1986677733776616536315084668928, 284423744326342962334231917756416
Offset: 0

Views

Author

N. J. A. Sloane, Aug 30 2013

Keywords

Crossrefs

Extensions

Term a(15) corrected by Andrey Zabolotskiy, Nov 27 2022

A228690 a(n) = A001676(4*n).

Original entry on oeis.org

1, 2, 1, 2, 24, 2, 2, 8, 6, 192, 8, 32, 24, 1, 4, 128, 24, 384, 80, 256
Offset: 1

Views

Author

N. J. A. Sloane, Aug 30 2013

Keywords

Crossrefs

Extensions

Term a(14) corrected, a(16)-a(20) added by Andrey Zabolotskiy, Nov 27 2022

A228691 a(n) = A001676(4*n + 1).

Original entry on oeis.org

1, 1, 8, 3, 16, 8, 4, 3, 32, 24, 32, 11520, 12, 32, 8, 1, 6144, 32, 128, 256, 9216
Offset: 0

Views

Author

N. J. A. Sloane, Aug 30 2013

Keywords

Crossrefs

Extensions

Term a(14) corrected, a(16)-a(20) added by Andrey Zabolotskiy, Nov 27 2022

A228692 a(n) = A001676(4n+2).

Original entry on oeis.org

1, 1, 6, 2, 16, 4, 12, 3, 32, 120, 96, 48, 24, 8, 4, 24, 512, 512, 384, 384, 10752
Offset: 0

Views

Author

N. J. A. Sloane, Aug 30 2013

Keywords

Crossrefs

Extensions

More terms from the b-file at A001676 added by Amiram Eldar, May 03 2024

A178579 Partial sums of A001676.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 34, 36, 44, 50, 1042, 1043, 1046, 1048, 17304, 17306, 17322, 17338, 540602, 540626, 540634, 540638, 69524914142, 69524914144, 69524914148, 69524914160, 69592014832, 69592014834, 69592014837, 69592014840, 7836803325944, 7836803325952, 7836803325984
Offset: 1

Views

Author

Jonathan Vos Post, Dec 24 2010

Keywords

Crossrefs

Cf. A001676.

Formula

a(n) = Sum_{i=1..n} A001676(i).

Extensions

More terms calculated from the b-file at A001676 and added by Amiram Eldar, May 03 2024

A187717 a(n) = A001676(n) / A187595(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 4, 6, 1, 1, 3, 2, 2, 2, 8, 16, 2, 24, 4, 4, 48, 2, 2, 12, 1, 2, 3, 3, 4, 8, 16, 32, 4, 6, 12, 120, 96, 192, 16, 96, 1, 8, 5760, 48, 96, 32, 6, 24, 16, 24, 16, 8, 3, 1, 4, 4, 4, 4, 1, 24, 16
Offset: 1

Views

Author

Paul Muljadi, Mar 18 2011

Keywords

Comments

The quotient of |Theta_n| and |bP_(n+1)| in the 1961 Kervaire-Milnor theorem.
The quotient of |S_n| and |S_n^{bp}| in the 2011 Milnor survey (see Theorem 5, Further Details, and Table 2). - Jonathan Sondow, Jun 16 2011

Extensions

More terms from Jonathan Sondow, Jun 16 2011
Terms a(56), a(57), a(63) corrected by Andrey Zabolotskiy, Nov 27 2022

A358706 Erroneous version of A001676.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 28, 2, 8, 6, 992, 1, 3, 2, 16256, 2, 16, 16, 523264, 24, 8, 4, 69524373504, 2, 4, 12, 67100672, 2, 3, 3, 7767211311104, 8, 32, 32, 3014494287036416, 6, 24, 120, 2303837503821447168, 192, 32, 96, 341653284209033216, 8, 11520, 48, 798366828940770681028608, 32, 12, 24, 11852230872517975212032, 24, 32, 8, 91678339751618435453288448, 2, 16, 4, 1986677733776616536315084668928, 4, 1, 24, 142211872163171481167115958878208
Offset: 1

Views

Author

Keywords

Comments

Included in accordance with OEIS policy of including published but erroneous sequences to serve as pointers to the correct versions.

A083420 a(n) = 2*4^n - 1.

Original entry on oeis.org

1, 7, 31, 127, 511, 2047, 8191, 32767, 131071, 524287, 2097151, 8388607, 33554431, 134217727, 536870911, 2147483647, 8589934591, 34359738367, 137438953471, 549755813887, 2199023255551, 8796093022207, 35184372088831, 140737488355327, 562949953421311
Offset: 0

Views

Author

Paul Barry, Apr 29 2003

Keywords

Comments

Sum of divisors of 4^n. - Paul Barry, Oct 13 2005
Subsequence of A000069; A132680(a(n)) = A005408(n). - Reinhard Zumkeller, Aug 26 2007
If x = a(n), y = A000079(n+1) and z = A087289(n), then x^2 + 2*y^2 = z^2. - Vincenzo Librandi, Jun 09 2014
It seems that a(n) divides A001676(3+4n). Several other entries apparently have this sequence embedded in them, e.g., A014551, A168604, A213243, A213246-8, and A279872. - Tom Copeland, Dec 27 2016
To elaborate on Librandi's comment from 2014: all these numbers, even if prime in Z, are sure not to be prime in Z[sqrt(2)], since a(n) can at least be factored as ((2^(2n + 1) - 1) - (2^(2n) - 1)*sqrt(2))((2^(2n + 1) - 1) + (2^(2n) - 1)*sqrt(2)). For example, 7 = (3 - sqrt(2))(3 + sqrt(2)), 31 = (7 - 3*sqrt(2))(7 + 3*sqrt(2)), 127 = (15 - 7*sqrt(2))(15 + 7*sqrt(2)). - Alonso del Arte, Oct 17 2017
Largest odd factors of A147590. - César Aguilera, Jan 07 2020

Crossrefs

Cf. A083421, A000668 (primes in this sequence), A004171, A000244.
Cf. A000302.

Programs

Formula

G.f.: (1+2*x)/((1-x)*(1-4*x)).
E.g.f.: 2*exp(4*x)-exp(x).
With a leading zero, this is a(n) = (4^n - 2 + 0^n)/2, the binomial transform of A080925. - Paul Barry, May 19 2003
From Benoit Cloitre, Jun 18 2004: (Start)
a(n) = (-16^n/2)*B(2n, 1/4)/B(2n) where B(n, x) is the n-th Bernoulli polynomial and B(k) = B(k, 0) is the k-th Bernoulli number.
a(n) = 5*a(n-1) - 4*a(n-2).
a(n) = (-4^n/2)*B(2*n, 1/2)/B(2*n). (End)
a(n) = A099393(n) + A020522(n) = A000302(n) + A024036(n). - Reinhard Zumkeller, Feb 07 2006
a(n) = Stirling2(2*(n+1), 2). - Zerinvary Lajos, Dec 06 2006
a(n) = 4*a(n-1) + 3 with n > 0, a(0) = 1. - Vincenzo Librandi, Dec 30 2010
a(n) = A001576(n+1) - 2*A001576(n). - Brad Clardy, Mar 26 2011
a(n) = 6*A002450(n) + 1. - Roderick MacPhee, Jul 06 2012
a(n) = A000203(A000302(n)). - Michel Marcus, Jan 20 2014
a(n) = Sum_{i = 0..n} binomial(2n+2, 2i). - Wesley Ivan Hurt, Mar 14 2015
a(n) = (1/4^n) * Sum_{k = 0..n} binomial(2*n+1,2*k)*9^k. - Peter Bala, Feb 06 2019
a(n) = A147590(n)/A000079(n). - César Aguilera, Jan 07 2020

A053381 Maximal number of linearly independent smooth nowhere-zero vector fields on a (2n+1)-sphere.

Original entry on oeis.org

1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 9, 1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 11, 1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 9, 1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 15, 1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 9, 1, 3, 1, 7, 1, 3, 1, 8, 1, 3, 1, 7, 1, 3, 1, 11, 1, 3, 1, 7, 1, 3
Offset: 0

Views

Author

Warren D. Smith, Jan 06 2000

Keywords

Comments

The corresponding terms for a 2n-sphere are all 0 ("you can't comb the hair on a billiard ball"). The "3" and "7" come from the quaternions and octonions.
b(n) = a(n-1): b(2^e) = ((e+1) idiv 4) + 2^((e+1) mod 4) - 1, b(p^e) = 1, p>2. - Christian G. Bower, May 18 2005
a(n-1) is multiplicative. - Christian G. Bower, Jun 03 2005

Crossrefs

For another version see A003484. Cf. A189995, A001676.

Programs

  • C
    int MaxLinInd(int n){ /* Returns max # linearly indep smooth nowhere zero * vector fields on S^{n-1}, n=1,2,... */ int b,c,d,rho; b = 0; while((n & 1)==0){ n /= 2; b++; } c = b & 3; d = (b - c)/4; rho = (1 << c) + 8*d; return( rho - 1); }
    
  • C
    int MaxLinInd(int n) { int b = _builtin_ctz(n); return (1<<b%4) + b/4*8 - 1; } /* _Jeremy Tan, Apr 09 2021 */
  • Maple
    with(numtheory): for n from 1 to 601 by 2 do c := irem(ifactors(n+1)[2,1,2],4): d := iquo(ifactors(n+1)[2,1,2],4): printf(`%d,`, 2^c+8*d-1) od:
    nmax:=101: A047530 := proc(n): ceil(n/4) + 2*ceil((n-1)/4) + 4*ceil((n-2)/4) + ceil((n-3)/4) end: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 0 to ceil(nmax/(p+2))+1 do A053381((2*n+1)*2^p-1) := A047530(p+1): od: od: seq(A053381(n), n=0..nmax); # Johannes W. Meijer, Jun 07 2011, revised Jan 29 2013
  • Mathematica
    a[n_] := Module[{b, c, d, rho, n0}, n0 = 2*n; b = 0; While[BitAnd[n0, 1] == 0, n0 /= 2; b++]; c = BitAnd[b, 3]; d = (b - c)/4; rho = 2^c + 8*d; Return[rho - 1]]; Table[a[n], {n, 1, 102}] (* Jean-François Alcover, May 16 2013, translated from C *)

Formula

Let f(n) be the number of linearly independent smooth nowhere-zero vector fields on an n-sphere. Then f(n) = 2^c + 8d - 1 where n+1 = (2a+1) 2^b and b = c+4d and 0 <= c <= 3. f(n) = 0 if n is even.
a((2*n+1)*2^p-1) = A047530(p+1), p >= 0 and n >= 0. a(2*n) = 1, n >= 0, and a(2^p-1) = A047530(p+1), p >= 0. - Johannes W. Meijer, Jun 07 2011
a(n) = A209675(n+1) - 1. - Reinhard Zumkeller, Mar 11 2012
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 10/3. - Amiram Eldar, Nov 29 2022

Extensions

More terms from James Sellers, Jun 01 2000

A048648 Order of n-th stable homotopy group of spheres.

Original entry on oeis.org

2, 2, 24, 1, 1, 2, 240, 4, 8, 6, 504, 1, 3, 4, 960, 4, 16, 16, 528, 24, 4, 4, 3144960, 4, 4, 12, 24, 2, 3, 6, 65280, 16, 32, 32, 114912, 6, 12, 120, 1267200, 384, 32, 96, 552, 8, 5760, 48, 12579840, 64, 12, 24, 384, 24, 16, 8, 20880, 2, 8, 4, 687456, 4, 1
Offset: 1

Views

Author

Keywords

Comments

Proved by Serre to be finite for all positive n.
The best current reference is Isaksen-Wang-Xu, Table 1. - Charles Rezk, Aug 22 2020

Examples

			Pi_1^S = Pi_4(S^3) = Z/2Z, so a(1) = |Z/2Z| = 2.
		

References

  • D. B. Fuks, "Spheres, homotopy groups of the", Encyclopaedia of Mathematics, Vol. 8.
  • S. O. Kochman, Stable homotopy groups of spheres. A computer-assisted approach. Lecture Notes in Mathematics, 1423. Springer-Verlag, Berlin, 1990. 330 pp. ISBN: 3-540-52468-1. [Math. Rev. 91j:55016]
  • Douglas C. Ravenel, Complex cobordism and stable homotopy groups of spheres, AMS Chelsea Publishing, 2003.
  • Hirosi Toda, Composition Methods in Homotopy Groups of Spheres, Princeton University Press, 1962.

Crossrefs

Cf. A001676.

Formula

a(n) = |Pi_n^S| = |Pi_{k+n}(S^k)| for k > n+1.

Extensions

More terms from Alex Fink (finka(AT)math.ucalgary.ca), Aug 10 2006
a(23) and a(29)-a(33) corrected by Charles Rezk, Aug 22 2020
More terms from Charles Rezk, Aug 25 2020
Showing 1-10 of 14 results. Next