cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059779 A Lucas triangle: T(m,n), m >= n >= 0.

Original entry on oeis.org

2, 1, 1, 3, 2, 3, 4, 3, 3, 4, 7, 5, 6, 5, 7, 11, 8, 9, 9, 8, 11, 18, 13, 15, 14, 15, 13, 18, 29, 21, 24, 23, 23, 24, 21, 29, 47, 34, 39, 37, 38, 37, 39, 34, 47, 76, 55, 63, 60, 61, 61, 60, 63, 55, 76, 123, 89, 102, 97, 99, 98, 99, 97, 102, 89, 123, 199, 144, 165, 157, 160, 159
Offset: 0

Views

Author

N. J. A. Sloane, Feb 22 2001

Keywords

Comments

From Amiram Eldar, May 15 2023: (Start)
Named "Lucas triangle" by Josef (1983), and "Josef's triangle" by Koshy (2007).
The rows of the triangle are the antidiagonals of the array in which the 0th row is T(0, k) = Lucas(k) = A000032(k), the 1st row is T(1, k) = Fibonacci(k+2) = A000045(k+2), and each subsequent row is the sum of the previous 2 rows.
The central elements in the even rows are in A127546, starting from the 2nd row, i.e., the central element of the k-th row, for even k >= 2, is A127546(k/2-1). (End)

Examples

			Triangle starts:
  2;
  1,1;
  3,2,3;
  4,3,3,4;
  ...
		

References

  • Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.

Crossrefs

Programs

  • Maple
    T := proc(m, n) option remember: if m=0 and n=0 then RETURN(2) fi: if m=1 and n=0 then RETURN(1) fi: if m=1 and n=1 then RETURN(1) fi: if m=2 and n=1 then RETURN(2) fi: if m<=n+1 then RETURN(T(m, m-n)) fi: if mJames Sellers, Feb 22 2001
  • Mathematica
    T[0, k_] := T[0, k] = LucasL[k]; T[1, k_] := T[1, k] = Fibonacci[k + 2]; T[n_, k_] := T[n, k] = T[n - 1, k] + T[n - 2, k]; Table[T[k, n - k], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, May 15 2023 *)

Formula

T(m, n) = T(m-1, n) + T(m-2, n); T(0, 0)=2, T(1, 0)=1, T(1, 1)=1, T(2, 1)=2.

Extensions

More terms from James Sellers, Feb 22 2001