A059807 Maximal size of the commutator subgroup of G where G is a finite group of order n.
1, 1, 1, 1, 1, 3, 1, 2, 1, 5, 1, 4, 1, 7, 1, 4, 1, 9, 1, 5, 7, 11, 1, 12, 1, 13, 3, 7, 1, 15, 1, 8, 1, 17, 1, 9, 1, 19, 13, 10, 1, 21, 1, 11, 1, 23, 1, 24, 1, 25, 1, 13, 1, 27, 11, 14, 19, 29, 1, 60, 1, 31, 7, 16, 1, 33, 1, 17, 1, 35, 1, 36, 1, 37, 25, 19, 1
Offset: 1
Keywords
Examples
a(6) = 3 because the commutator subgroup of the symmetric group S_3 is the group Z_3.
Links
- Eric M. Schmidt, Table of n, a(n) for n = 1..2000
- MathOverflow, Center of p-groups
Programs
-
GAP
A059807 := function(n) local max, fact, i; if (IsPrimePowerInt(n)) then fact := Factors(n); if (Length(fact) >= 2) then return n/fact[1]^2; fi; fi; max := 1; for i in [1..NumberSmallGroups(n)] do max := Maximum(max, Size(DerivedSubgroup(SmallGroup(n, i)))); od; return max; end; # Eric M. Schmidt, Sep 20 2012
Formula
For prime p and m >= 2, a(p^m) = p^(m - 2). - Eric M. Schmidt, Sep 20 2012
Extensions
More terms from Eric M. Schmidt, Sep 20 2012
Comments